9,547 research outputs found
Structure and formation energy of carbon nanotube caps
We present a detailed study of the geometry, structure and energetics of
carbon nanotube caps. We show that the structure of a cap uniquely determines
the chirality of the nanotube that can be attached to it. The structure of the
cap is specified in a geometrical way by defining the position of six pentagons
on a hexagonal lattice. Moving one (or more) pentagons systematically creates
caps for other nanotube chiralities. For the example of the (10,0) tube we
study the formation energy of different nanotube caps using ab-initio
calculations. The caps with isolated pentagons have an average formation energy
0.29+/-0.01eV/atom. A pair of adjacent pentagons requires a much larger
formation energy of 1.5eV. We show that the formation energy of adjacent
pentagon pairs explains the diameter distribution in small-diameter nanotube
samples grown by chemical vapor deposition.Comment: 8 pages, 8 figures (gray scale only due to space); submitted to Phys.
Rev.
Electronic structure of silicon-based nanostructures
We have developed an unifying tight-binding Hamiltonian that can account for
the electronic properties of recently proposed Si-based nanostructures, namely,
Si graphene-like sheets and Si nanotubes. We considered the and
models up to first- and second-nearest neighbors, respectively. Our
results show that the Si graphene-like sheets considered here are metals or
zero-gap semiconductors, and that the corresponding Si nanotubes follow the
so-called Hamada's rule [Phys. Rev. Lett. {\bf 68}, 1579 1992]. Comparison to a
recent {\it ab initio} calculation is made.Comment: 12 pages, 6 Figure
The Effect of 45{\deg} Grain Boundaries and associated Fe particles on Jc and resistivity in Ba(Fe0.9Co0.1)2As2 Thin Films
The anisotropy of the critical current density Jc depends in general on both
the properties of the flux lines (such as line tension, coherence length and
penetration depth) and the properties of the defects (such as density, shape,
orientation etc.). Whereas the Jc anisotropy in microstructurally clean films
can be scaled to an effective magnetic field containing the Ginzburg-Landau
anisotropy term, it is in general not possible (or only in a limited field
range) for samples containing extended defects. Here, the Jc anisotropy of a
Co-doped BaFe2As2 sample with 45{\deg} [001] tilt grain boundaries (GBs), i.e.
grain boundaries created by 45{\deg} in-plane rotated grains, as well as
extended Fe particles is investigated. This microstructure leads to c-axis
correlated pinning, both due to the GBs and the Fe particles and manifests in a
c-axis peak in the Jc anisotropy at low magnetic fields and a deviation from
the anisotropic Ginzburg-Landau scaling at higher fields. Strong pinning at
ellipsoidal extended defects, i.e. the Fe particles, is discussed, and the full
Jc anisotropy is fitted successfully with the vortex path model. The results
are compared to a sample without GBs and Fe particles. 45{\deg} GBs seem to be
good pinning centers rather than detrimental to current flow.Comment: 8 pages, 7 figures, CEC-ICMC 2013 proceeding, accepted for
publication in Advances in Cryogenic Engineering (Materials
Galactic contamination in the QMAP experiment
We quantify the level of foreground contamination in the QMAP Cosmic
Microwave Background (CMB) data with two objectives: (a) measuring the level to
which the QMAP power spectrum measurements need to be corrected for foregrounds
and (b) using this data set to further refine current foreground models. We
cross-correlate the QMAP data with a variety of foreground templates. The 30
GHz Ka-band data is found to be significantly correlated with the Haslam 408
MHz and Reich and Reich 1420 MHz synchrotron maps, but not with the Diffuse
Infrared Background Experiment (DIRBE) 240, 140 and 100 micron maps or the
Wisconsin H-Alpha Mapper (WHAM) survey. The 40 GHz Q-band has no significant
template correlations. We discuss the constraints that this places on
synchrotron, free-free and dust emission. We also reanalyze the
foreground-cleaned Ka-band data and find that the two band power measurements
are lowered by 2.3% and 1.3%, respectively.Comment: 4 ApJL pages, including 4 figs. Color figures and data at
http://www.hep.upenn.edu/~angelica/foreground.html#qmap or from
[email protected]
DA495 - an aging pulsar wind nebula
We present a radio continuum study of the pulsar wind nebula (PWN) DA 495
(G65.7+1.2), including images of total intensity and linear polarization from
408 to 10550 MHz based on the Canadian Galactic Plane Survey and observations
with the Effelsberg 100-m Radio Telescope. Removal of flux density
contributions from a superimposed \ion{H}{2} region and from compact
extragalactic sources reveals a break in the spectrum of DA 495 at 1.3 GHz,
with a spectral index below the break and
above it (). The
spectral break is more than three times lower in frequency than the lowest
break detected in any other PWN. The break in the spectrum is likely the result
of synchrotron cooling, and DA 495, at an age of 20,000 yr, may have
evolved from an object similar to the Vela X nebula, with a similarly energetic
pulsar. We find a magnetic field of 1.3 mG inside the nebula. After
correcting for the resulting high internal rotation measure, the magnetic field
structure is quite simple, resembling the inner part of a dipole field
projected onto the plane of the sky, although a toroidal component is likely
also present. The dipole field axis, which should be parallel to the spin axis
of the putative pulsar, lies at an angle of {\sim}50\degr east of the North
Celestial Pole and is pointing away from us towards the south-west. The upper
limit for the radio surface brightness of any shell-type supernova remnant
emission around DA 495 is OAWatt
m Hz sr (assuming a radio spectral index of ), lower than the faintest shell-type remnant known to date.Comment: 25 pages, accepted by Ap
Raman imaging and electronic properties of graphene
Graphite is a well-studied material with known electronic and optical
properties. Graphene, on the other hand, which is just one layer of carbon
atoms arranged in a hexagonal lattice, has been studied theoretically for quite
some time but has only recently become accessible for experiments. Here we
demonstrate how single- and multi-layer graphene can be unambiguously
identified using Raman scattering. Furthermore, we use a scanning Raman set-up
to image few-layer graphene flakes of various heights. In transport experiments
we measure weak localization and conductance fluctuations in a graphene flake
of about 7 monolayer thickness. We obtain a phase-coherence length of about 2
m at a temperature of 2 K. Furthermore we investigate the conductivity
through single-layer graphene flakes and the tuning of electron and hole
densities via a back gate
Epitaxial LaFeAsOF thin films grown by pulsed laser deposition
Superconducting and epitaxially grown LaFeAsOF thin films were successfully
prepared on (001)-oriented LaAlO3 substrates using pulsed laser deposition. The
prepared thin films show exclusively a single in-plane orientation with
epitaxial relation (001)[100] parallel to (001)[100] and a FWHM value of 1deg.
Furthermore, resistive measurement of the superconducting transition
temperature revealed a Tc90 of 25K with a high residual resistive ratio of 6.8.
The applied preparation technique, standard thin film pulsed laser deposition
at room temperature in combination with a subsequent post annealing process, is
suitable for fabrication of high quality LaFeAsO1-xFx thin films. A high upper
critical field of 76.2 T was evaluated for magnetic fields applied
perpendicular to the c-axis and the anisotropy was calculated to be 3.3
assuming single band superconductivity.Comment: 6 pages, 4 Figure
Automatic Detection of Expanding HI Shells Using Artificial Neural Networks
The identification of expanding HI shells is difficult because of their
variable morphological characteristics. The detection of HI bubbles on a global
scale therefore never has been attempted. In this paper, an automatic detector
for expanding HI shells is presented. The detection is based on the more stable
dynamical characteristics of expanding shells and is performed in two stages.
The first one is the recognition of the dynamical signature of an expanding
bubble in the velocity spectra, based on the classification of an artificial
neural network. The pixels associated with these recognized spectra are
identified on each velocity channel. The second stage consists in looking for
concentrations of those pixels that were firstly pointed out, and to decide if
they are potential detections by morphological and 21-cm emission variation
considerations. Two test bubbles are correctly detected and a potentially new
case of shell that is visually very convincing is discovered. About 0.6% of the
surveyed pixels are identified as part of a bubble. These may be false
detections, but still constitute regions of space with high probability of
finding an expanding shell. The subsequent search field is thus significantly
reduced. We intend to conduct in the near future a large scale HI shells
detection over the Perseus Arm using our detector.Comment: 39 pages, 11 figures, accepted by PAS
Highly effective and isotropic pinning in epitaxial Fe(Se,Te) thin films grown on CaF2 substrates
We report on the isotropic pinning obtained in epitaxial Fe(Se,Te) thin films
grown on CaF2 (001) substrate. High critical current density values larger than
1 MA/cm2 in self field in liquid helium are reached together with a very weak
dependence on the magnetic field and a complete isotropy. Analysis through
Transmission Electron Microscopy evidences the presence of defects looking like
lattice disorder at a very small scale, between 5 and 20 nm, which are thought
to be responsible for such isotropic behavior in contrast to what observed on
SrTiO3, where defects parallel to the c-axis enhance pinning in that directio
- …