8,962 research outputs found

    HI ``Tails'' from Cometary Globules in IC1396

    Get PDF
    IC 1396 is a relatively nearby (750 pc), large (>2 deg), HII region ionized by a single O6.5V star and containing bright-rimmed cometary globules. We have made the first arcmin resolution images of atomic hydrogen toward IC 1396, and have found remarkable ``tail''-like structures associated with some of the globules and extending up to 6.5 pc radially away from the central ionizing star. These HI ``tails'' may be material which has been ablated from the globule through ionization and/or photodissociation and then accelerated away from the globule by the stellar wind, but which has since drifted into the ``shadow'' of the globules. This report presents the first results of the Galactic Plane Survey Project recently begun by the Dominion Radio Astrophysical Observatory.Comment: 11 pages, 5 postscript figures, uses aaspp4.sty macros, submitted in uuencoded gzipped tar format, accepted for publication in Astrophysical Journal Letters, colour figures available at http://www.drao.nrc.ca/~schieven/news_sep95/ic1396.htm

    The S=1/2 chain in a staggered field: High-energy bound-spinon state and the effects of a discrete lattice

    Full text link
    We report an experimental and theoretical study of the antiferromagnetic S=1/2 chain subject to uniform and staggered fields. Using inelastic neutron scattering, we observe a novel bound-spinon state at high energies in the linear chain compound CuCl2 * 2((CD3)2SO). The excitation is explained with a mean-field theory of interacting S=1/2 fermions and arises from the opening of a gap at the Fermi surface due to confining spinon interactions. The mean-field model also describes the wave-vector dependence of the bound-spinon states, particularly in regions where effects of the discrete lattice are important. We calculate the dynamic structure factor using exact diagonalization of finite length chains, obtaining excellent agreement with the experiments.Comment: 16 pages, 7 figures, accepted by Phys. Rev.

    Phase diagram and spin Hamiltonian of weakly-coupled anisotropic S=1/2 chains in CuCl2*2((CD3)2SO)

    Full text link
    Field-dependent specific heat and neutron scattering measurements were used to explore the antiferromagnetic S=1/2 chain compound CuCl2 * 2((CD3)2SO). At zero field the system acquires magnetic long-range order below TN=0.93K with an ordered moment of 0.44muB. An external field along the b-axis strengthens the zero-field magnetic order, while fields along the a- and c-axes lead to a collapse of the exchange stabilized order at mu0 Hc=6T and mu0 Hc=3.5T, respectively (for T=0.65K) and the formation of an energy gap in the excitation spectrum. We relate the field-induced gap to the presence of a staggered g-tensor and Dzyaloshinskii-Moriya interactions, which lead to effective staggered fields for magnetic fields applied along the a- and c-axes. Competition between anisotropy, inter-chain interactions and staggered fields leads to a succession of three phases as a function of field applied along the c-axis. For fields greater than mu0 Hc, we find a magnetic structure that reflects the symmetry of the staggered fields. The critical exponent, beta, of the temperature driven phase transitions are indistinguishable from those of the three-dimensional Heisenberg magnet, while measurements for transitions driven by quantum fluctuations produce larger values of beta.Comment: revtex 12 pages, 11 figure

    Glassy relaxation without freezing in a random dipolar-coupled Ising magnet

    Get PDF
    We have measured the magnetic susceptibility, χ’+iχ’’, of the dilute dipolar-coupled Ising magnet LiHo_(0.045)Y_(0.955)F_4 over six decades of frequency from 0.02 Hz to 20 kHz. The system behaves as an ideal relaxational glass with Arrhenius behavior in temperature of the peak in χ’’. Scaling data from T=100 mK to T=300 mK by the peak in χ’’ shows an enhanced low-frequency response at high temperatures, in contrast to expectations for spin-glasses and random-field magnets

    Ferromagnetism, glassiness, and metastability in a dilute dipolar-coupled magnet

    Get PDF
    We have measured the ac magnetic susceptibility of the model dilute dipolar-coupled Ising system LiHo_xY_(1−x)F_4. The x=0.46 material displays an ordinary ferromagnetic transition, while the x=0.045 and 0.167 samples are two very different magnetic glasses. Thermal relaxation times are more than five times longer for x=0.167 than for x=0.045. In addition, the more concentrated glass shows history dependence and metastability upon field cooling

    Extended quantum critical phase in a magnetized spin-1/2 antiferromagnetic chain

    Full text link
    Measurements are reported of the magnetic field dependence of excitations in the quantum critical state of the spin S=1/2 linear chain Heisenberg antiferromagnet copper pyrazine dinitrate (CuPzN). The complete spectrum was measured at k_B T/J <= 0.025 for H=0 and H=8.7 Tesla where the system is ~30% magnetized. At H=0, the results are in quantitative agreement with exact calculations of the dynamic spin correlation function for a two-spinon continuum. At high magnetic field, there are multiple overlapping continua with incommensurate soft modes. The boundaries of these continua confirm long-standing predictions, and the intensities are consistent with exact diagonalization and Bethe Ansatz calculations.Comment: 4 pages, 4 figure

    DA495 - an aging pulsar wind nebula

    Full text link
    We present a radio continuum study of the pulsar wind nebula (PWN) DA 495 (G65.7+1.2), including images of total intensity and linear polarization from 408 to 10550 MHz based on the Canadian Galactic Plane Survey and observations with the Effelsberg 100-m Radio Telescope. Removal of flux density contributions from a superimposed \ion{H}{2} region and from compact extragalactic sources reveals a break in the spectrum of DA 495 at 1.3 GHz, with a spectral index α=0.45±0.20{\alpha}={-0.45 \pm 0.20} below the break and α=0.87±0.10{\alpha}={-0.87 \pm 0.10} above it (Sννα{S}_\nu \propto{\nu^{\alpha}}). The spectral break is more than three times lower in frequency than the lowest break detected in any other PWN. The break in the spectrum is likely the result of synchrotron cooling, and DA 495, at an age of \sim20,000 yr, may have evolved from an object similar to the Vela X nebula, with a similarly energetic pulsar. We find a magnetic field of \sim1.3 mG inside the nebula. After correcting for the resulting high internal rotation measure, the magnetic field structure is quite simple, resembling the inner part of a dipole field projected onto the plane of the sky, although a toroidal component is likely also present. The dipole field axis, which should be parallel to the spin axis of the putative pulsar, lies at an angle of {\sim}50\degr east of the North Celestial Pole and is pointing away from us towards the south-west. The upper limit for the radio surface brightness of any shell-type supernova remnant emission around DA 495 is Σ1GHz5.4×1023\Sigma_{1 GHz} \sim 5.4 \times 10^{-23} OAWatt m2^{-2} Hz1^{-1} sr1^{-1} (assuming a radio spectral index of α=0.5\alpha = -0.5), lower than the faintest shell-type remnant known to date.Comment: 25 pages, accepted by Ap
    corecore