24 research outputs found
Light-Responsive Hydrogel Microcrawlers, Powered and Steered with Spatially Homogeneous Illumination
Sub-millimeter untethered locomoting robots hold promise to radically change multiple areas of human activity such as microfabrication/assembly or health care. To overcome the associated hurdles of such a degree of robot miniaturization, radically new approaches are being adopted, often relying on soft actuating polymeric materials. Here, we present light-driven, crawling microrobots that locomote by a single degree of freedom actuation of their light-responsive tail section. The direction of locomotion is dictated by the robot body design and independent of the spatial modulation of the light stimuli, allowing simultaneous multidirectional motion of multiple robots. Moreover, we present a method for steering such robots by reversibly deforming their front section, using ultraviolet (UV) light as a trigger. The deformation dictates the robot locomotion, performing right- or left-hand turning when the UV is turned on or off respectively. The robots’ motion and navigation are not coupled to the position of the light sources, which enables simultaneous locomotion of multiple robots, steering of robots and brings about flexibility with the methods to deliver the light to the place of robot operation
Objectively assessing bioartificial organs
The metrics used, thus far, to assess bioartificial organ function are shown to be subjective and requiring validation. Therefore, four categories of correlations are proposed based on, respectively, device, in vitro and in vivo evaluations, and clinical function. Examples are presented whereby the correlations among individual indicators are used as a means to expedite the development of immunoisolated cells. Specifically, a case study illustrating the validation of in vitro indicators of in vivo graft function for the bioartificial pancreas (microencapsulated islets) is summarized. This has revealed thresholds with respect to given metrics relating to in vivo device function, the necessity to couple bioartificial organ design with transplant site selection, as well as the lack of objectivity involved in the evaluation and establishment of hypotheses. Specific quantitative indicators illustrate the need for quality-controlled measures, for example, relating to the tolerance of microcapsule diameter and membrane thickness distributions. Qualitative indices representing fibrosis and device properties (e.g., sphericity) are also used to describe the need for in vitro experiments in the development of bioartificial organs. [on SciFinder (R)