15 research outputs found

    Alterations in vasomotor systems and mechanics of resistance-sized mesenteric arteries from SHR and WKY male rats following in vivo testosterone manipulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Testosterone (T) and the sympathetic nervous system each contribute to the pathology of hypertension. Altered blood vessel reactivity is also associated with the pathology of high blood pressure. The purpose of this study was to examine the effects of T manipulation in the regulation of resistance-sized blood vessel reactivity.</p> <p>Methods</p> <p>Adult spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) male rats at 8 weeks of age were used. The rats were divided into groups consisting of gonadally intact controls (CONT), castrate with sham implant (CAST) and castrate with T implant (CAST + T) (<it>n </it>= 6 to 12 per group). Following a short-term period of T treatment (approximately 4 weeks), plasma norepinephrine (NE) and plasma T were assessed by performing high-performance liquid chromatography and RIA, respectively. Resistance-sized mesenteric artery reactivity was assessed on a pressurized arteriograph for myogenic reactivity (MYO), phenylephrine (PE) responsiveness and passive structural mechanics.</p> <p>Results</p> <p>SHR and WKY males exhibited similar physiological trends in T manipulation, with castration significantly lowering plasma T and NE and T replacement significantly increasing plasma T and NE. T manipulation in general resulted in significant alterations in MYO of second-order mesenteric arteries, with T replacement decreasing MYO in SHR (<it>P </it>< 0.05) compared to CONT, T replacement increasing MYO, and CAST decreasing MYO in WKY rats (<it>P </it>< 0.001) compared to CONT rats. Additionally, PE-induced constriction was significantly altered in both strains following T treatment, with the effective concentration of PE to constrict the vessel to 50% of the total diameter significantly increased in the CAST + T SHR compared to CONT (<it>P </it>< 0.05). Comparisons of passive structural mechanics between SHR and WKY treatment groups indicated in SHR a significantly increased wall-to-lumen ratio and decreased circumferential wall stress compared to WKY treatment groups.</p> <p>Conclusions</p> <p>These data suggest that T and NE are involved in a complex interaction with both myogenic reactivity and structural alterations of resistance-sized blood vessels and that these factors likely contribute to the development and maintenance of hypertension.</p

    TRA2 beta controls Mypt1 exon 24 splicing in the developmental maturation of mouse mesenteric artery smooth muscle

    No full text
    Diversity of smooth muscle within the vascular system is generated by alternative splicing of exons, yet there is limited understanding of its timing or control mechanisms. We examined splicing of myosin phosphatase regulatory subunit (Mypt1) exon 24 (E24) in relation to smooth muscle myosin heavy chain (Smmhc) and smoothelin (Smtn) alternative exons (Smmhc E6 and Smtn E20) during maturation of mouse mesenteric artery (MA) smooth muscle. The role of transformer 2 beta (Tra2 beta), a master regulator of splicing in flies, in maturation of arterial smooth muscle was tested through gene inactivation. Splicing of alternative exons in bladder smooth muscle was examined for comparative purposes. MA smooth muscle maturation began after postnatal week 2 and was complete at maturity, as indicated by switching to Mypt1 E24(+) and Smtn E20-splice variants and 11-fold induction of Smmhc. Similar changes in bladder were complete by postnatal day 3. Splicing of Smmhc E6 was temporally dissociated from Mypt1 E24 and Smtn E20 and discordant between arteries and bladder. Tamoxifen-induced smooth muscle-specific inactivation of Tra2 beta within the first week of life but not in maturity reduced splicing of Mypt1 E24 in MAs. Inactivation of Tra2 beta causing a switch to the isoform of MYPT1 containing the COOH-terminal leucine zipper motif (E24(-)) increased arterial sensitivity to cGMP-mediated relaxation. In conclusion, maturation of mouse MA smooth muscle begins postnatally and continues until sexual maturity. TRA2 beta is required for specification during this period of maturation, and its inactivation alters the contractile properties of mature arterial smooth muscle

    A splice variant of the myosin phosphatase regulatory subunit tunes arterial reactivity and suppresses response to salt loading

    No full text
    © 2016 the American Physiological Society. The cGMP activated kinase cGK1α is targeted to its substrates via leucine zipper (LZ)-mediated heterodimerization and thereby mediates vascular smooth muscle (VSM) relaxation. One target is myosin phosphatase (MP), which when activated by cGK1α results in VSM relaxation even in the presence of activating calcium. Variants of MP regulatory subunit Mypt1 are generated by alternative splicing of the 31 nt exon 24 (E24), which, by changing the reading frame, codes for isoforms that contain or lack the COOH-terminal LZ motif (E24+/LZ−; E24−/LZ+). Expression of these isoforms is vessel specific and developmentally regulated, modulates in disease, and is proposed to confer sensitivity to nitric oxide (NO)/cGMP-mediated vasorelaxation. To test this, mice underwent Tamoxifen-inducible and smooth muscle-specific knockout of E24 (E24 cKO) after weaning. Deletion of a single allele of E24 (shift to Mypt1 LZ+) enhanced vasorelaxation of first-order mesenteric arteries (MA1) to diethylamine-NONOate (DEA/NO) and to cGMP in permeabilized and calcium-clamped arteries and lowered blood pressure. There was no further effect of deletion of both E24 alleles, indicating high sensitivity to shift of Mypt1 isoforms. However, a unique property of MA1s from homozygous E24 cKOs was significantly reduced force generation to α-adrenergic activation. Furthermore 2 wk of high-salt (4% NaCl) diet increased MA1 force generation to phenylephrine in control mice, a response that was markedly suppressed in the E24 cKO homozygotes. Thus Mypt1 E24 splice variants tune arterial reactivity and could be worthy targets for lowering vascular resistance in disease states

    Redox signaling and splicing dependent change in myosin phosphatase underlie early versus late changes in NO vasodilator reserve in a mouse LPS model of sepsis.

    No full text
    Microcirculatory dysfunction may cause tissue malperfusion and progression to organ failure in the later stages of sepsis, but the role of smooth muscle contractile dysfunction is uncertain. Mice were given intraperitoneal LPS, and mesenteric arteries were harvested at 6-h intervals for analyses of gene expression and contractile function by wire myography. Contractile (myosin and actin) and regulatory [myosin light chain kinase and phosphatase subunits (Mypt1, CPI-17)] mRNAs and proteins were decreased in mesenteric arteries at 24 h concordant with reduced force generation to depolarization, Ca(2+), and phenylephrine. Vasodilator sensitivity to DEA/nitric oxide (NO) and cGMP under Ca(2+) clamp were increased at 24 h after LPS concordant with a switch to Mypt1 exon 24− splice variant coding for a leucine zipper (LZ) motif required for PKG-1α activation of myosin phosphatase. This was reproduced by smooth muscle-specific deletion of Mypt1 exon 24, causing a shift to the Mypt1 LZ+ isoform. These mice had significantly lower resting blood pressure than control mice but similar hypotensive responses to LPS. The vasodilator sensitivity of wild-type mice to DEA/NO, but not cGMP, was increased at 6 h after LPS. This was abrogated in mice with a redox dead version of PKG-1α (Cys42Ser). Enhanced vasorelaxation in early endotoxemia is mediated by redox signaling through PKG-1α but in later endotoxemia by myosin phosphatase isoform shifts enhancing sensitivity to NO/cGMP as well as smooth muscle atrophy. Muscle atrophy and modulation may be a novel target to suppress microcirculatory dysfunction; however, inactivation of inducible NO synthase, treatment with the IL-1 antagonist IL-1ra, or early activation of α-adrenergic signaling did not suppressed this response

    Genetic background in the rat affects endocrine and metabolic outcomes of Bisphenol F exposure

    No full text
    Environmental bisphenol compounds like bisphenol F (BPF) are endocrine disrupting chemicals (EDC) affecting adipose and classical endocrine systems. Genetic factors that influence EDC exposure outcomes are poorly understood and are unaccounted variables that may contribute to the large range of reported outcomes in the human population. We previously demonstrated that BPF exposure increased body growth and adiposity in male N/NIH Heterogeneous Stock (HS) rats, a genetically heterogeneous outbred population. We hypothesize that the founder strains of the HS rat exhibit EDC effects that were strain- and sex-dependent. Weanling littermate pairs of male and female ACI, BN, BUF, F344, M520, and WKY rats randomly received either vehicle (0.1% EtOH) or 1.125 mg BPF/L in 0.1% EtOH for ten weeks in drinking water. Body weight and fluid intake were measured weekly, metabolic parameters were assessed, and blood and tissues were collected. BPF increased thyroid weight in ACI males, thymus and kidney weight in BUF females, adrenal weight in WKY males, and possibly increased pituitary weight in BN males. BUF females also developed a disruption in activity and metabolic rate with BPF exposure. These sex- and strain-specific exposure outcomes illustrate that HS rat founders possess diverse bisphenol-exposure risk alleles and suggests that BPF exposure may intensify inherent organ system dysfunction existing in the HS rat founders. We propose that the HS rat will be an invaluable model for dissecting gene EDC interactions on health
    corecore