881 research outputs found

    Proximity effect thermometer for local temperature measurements on mesoscopic samples

    Full text link
    Using the strong temperature dependent resistance of a normal metal wire in proximity to a superconductor, we have been able to measure the local temperature of electrons heated by flowing a dc current in a metallic wire to within a few tens of millikelvin at low temperatures. By placing two such thermometers at different parts of a sample, we have been able to measure the temperature difference induced by a dc current flowing in the sample. This technique may provide a flexible means of making quantitative thermal and thermoelectric measurements on mesoscopic metallic samples

    Phase formation in ion‐irradiated and annealed Ni‐rich Ni‐Al thin films

    Full text link
    Phase formation was studied in ion‐irradiated multilayer and coevaporated Ni‐20 at. % Al films supported by Cu, Mo, and Ni transmission electron microscopy (TEM) grids. Irradiation with either 700‐keV Xe or 1.7‐MeV Xe, to doses sufficient to homogenize the multilayers (≥7.5×1015 cm−2), resulted in the formation of metastable supersaturated γ and HCP phases in both film types. Post‐irradiation annealing of multilayers at 450 °C for 1 h transformed the metastable phases to a two‐phase γ+γ′ microstructure. In the absence of Cu, the formation of γ′ appeared to proceed by a traditional diffusional growth mechanism, resulting in small (<50 Å) γ′ precipitates in γ matrix grains. The presence of Cu caused the formation of a dual‐phase γ+γ′ structure (i.e., distinct, equal‐sized grains of γ and γ′) during post‐irradiation annealing. It is suggested that copper affected the nucleation of γ′ precipitates and increased the kinetics of growth resulting in the dual‐phase morphology. Strong irradiation‐induced textures were observed in the multilayers that were less pronounced in the coevaporated films. The texture in the multilayers was attributed to the presence of a slight as‐evaporated texture combined with the enhanced atomic mobility due to the heat‐of‐mixing released during irradiation. The irradiation‐induced texture appeared to be necessary for the formation of the dual‐phase structure since it likely provided high‐diffusivity paths for Cu to diffuse into the film from the TEM grid.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70874/2/JAPIAU-69-4-2021-1.pd

    The heat‐of‐mixing effect on ion‐induced grain growth

    Full text link
    Irradiation experiments were conducted on multilayer (ML) and coevaporated (CO) thin films in order to examine the role that the heat‐of‐mixing (ΔHmix) has in ion‐induced grain growth. Room‐temperature irradiations using 1.7‐MeV Xe ions were performed in the High Voltage Electron Microscope at Argonne National Laboratory. The ML films (Pt‐Ti, Pt‐V, Pt‐Ni, Au‐Co, and Ni‐Al) spanned a large range of calculated ΔHmix values. Comparison of grain growth rates between ML and CO films of a given alloy confirmed a heat‐of‐mixing effect. With the exception of the Pt‐V system, differences in grain growth rates between ML and CO films varied according to the sign of the calculated ΔHmix of the system. Substantial variations in growth rates among CO alloy films experiencing similar displacement damage demonstrated that a purely collisional approach is inadequate for describing ion‐induced grain growth. Therefore consideration must also be given to material‐specific properties, such as cohesive energy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70305/2/JAPIAU-70-3-1252-1.pd

    Origin of atomic clusters during ion sputtering

    Get PDF
    Previous studies have shown that the size distributions of small clusters ( n&#60;=40 n = number of atoms/cluster) generated by sputtering obey an inverse power law with an exponent between -8 and -4. Here we report electron microscopy studies of the size distributions of larger clusters ( n&#62;=500) sputtered by high-energy ion impacts. These new measurements also yield an inverse power law, but one with an exponent of -2 and one independent of sputtering yield, indicating that the large clusters are produced when shock waves, generated by subsurface displacement cascades, ablate the surface
    • …
    corecore