11 research outputs found

    Toxicity of kadsura coccinea (Lem.) A. C. Sm. essential oil to the bed bug, cimex lectularius L. (hemiptera: Cimicidae)

    Get PDF
    Copyright © 2019 American Society for Microbiology. All Rights Reserved. We sought to define trends in and predictors of carbapenem consumption across community, teaching, and university-affiliated hospitals in the United States and Canada. We conducted a retrospective multicenter survey of carbapenem and broad-spectrum noncarbapenem beta-lactam consumption between January 2011 and December 2013. Consumption was tabulated as defined daily doses (DDD) or as days of therapy (DOT) per 1,000 patient days (PD). Multivariate mixed-effects models were explored, and final model goodness of fit was assessed by regressions of observed versus predicted values and residual distributions. A total of 20 acute-care hospitals responded. The centers treated adult patients (n 19/20) and pediatric/neonatal patients (n 17/20). The majority of the centers were nonprofit (n 17/20) and not affiliated with medical/teaching institutions (n 11/20). The median (interquartile range [IQR]) carbapenem consumption rates were 38.8 (17.4 to 95.7) DDD/1,000 PD and 29.7 (19.2 to 40.1) DOT/1,000 PD overall. Carbapenem consumption was well described by a multivariate linear mixed-effects model (fixed effects, R2 0.792; fixed plus random effects, R2 0.974). Carbapenem consumption increased by 1.91-fold/quarter from 48.6 DDD/1,000 PD (P 0.004) and by 0.056-fold/quarter from 45.7 DOT/ 1,000 PD (P 0.93) over the study period. Noncarbapenem consumption was independently related to increasing carbapenem consumption (beta 0.31 for increasing noncarbapenem beta-lactam consumption; P 0.001). Regular antibiogram publication and promotion of conversion from intravenous (i.v.) to oral (p.o.) administration independently affected carbapenem consumption rates. In the final model, 58.5% of the observed variance in consumption was attributable to between-hospital differences. Rates of carbapenem consumption across 20 North American hospitals differed greatly, and the observed differences were correlated with hospital-specific demographics. Additional studies focusing on the drivers of hospital-specific carbapenem consumption are needed to determine whether these rates are justifiable

    Schinus molle: anatomy of leaves and stems, chemical composition and insecticidal activities of volatile oil against bed bug (Cimex lectularius)

    Get PDF
    © 2019 by the authors The investigation of the constituents that were isolated from Turnera diffusa (damiana) for their inhibitory activities against recombinant human monoamine oxidases (MAO-A and MAO-B) in vitro identified acacetin 7-methyl ether as a potent selective inhibitor of MAO-B (IC50 = 198 nM). Acacetin 7-methyl ether (also known as 5-hydroxy-40, 7-dimethoxyflavone) is a naturally occurring flavone that is present in many plants and vegetables. Acacetin 7-methyl ether was four-fold less potent as an inhibitor of MAO-B when compared to acacetin (IC50 = 50 nM). However, acacetin 7-methyl ether was \u3e500-fold selective against MAO-B over MAO-A as compared to only two-fold selectivity shown by acacetin. Even though the IC50 for inhibition of MAO-B by acacetin 7-methyl ether was ~four-fold higher than that of the standard drug deprenyl (i.e., SelegilineTM or ZelaparTM, a selective MAO-B inhibitor), acacetin 7-methyl ether’s selectivity for MAO-B over MAO-A inhibition was greater than that of deprenyl (\u3e500- vs. 450-fold). The binding of acacetin 7-methyl ether to MAO-B was reversible and time-independent, as revealed by enzyme-inhibitor complex equilibrium dialysis assays. The investigation on the enzyme inhibition-kinetics analysis with varying concentrations of acacetin 7-methyl ether and the substrate (kynuramine) suggested a competitive mechanism of inhibition of MAO-B by acacetin 7-methyl ether with Ki value of 45 nM. The docking scores and binding-free energies of acacetin 7-methyl ether to the X-ray crystal structures of MAO-A and MAO-B confirmed the selectivity of binding of this molecule to MAO-B over MAO-A. In addition, molecular dynamics results also revealed that acacetin 7-methyl ether formed a stable and strong complex with MAO-B. The selective inhibition of MAO-B suggests further investigations on acacetin 7-methyl as a potential new drug lead for the treatment of neurodegenerative disorders, including Parkinson’s disease

    A Variety of New Traveling Wave Packets and Conservation Laws to the Nonlinear Low-Pass Electrical Transmission Lines via Lie Analysis

    No full text
    This research is based on computing the new wave packets and conserved quantities to the nonlinear low-pass electrical transmission lines (NLETLs) via the group-theoretic method. By using the group-theoretic technique, we analyse the NLETLs and compute infinitesimal generators. The resulting equations concede two-dimensional Lie algebra. Then, we have to find the commutation relation of the entire vector field and observe that the obtained generators make an abelian algebra. The optimal system is computed by using the entire vector field and using the concept of abelian algebra. With the help of an optimal system, NLETLs convert into nonlinear ODE. The modified Khater method (MKM) is used to find the wave packets by using the resulting ODEs for a supposed model. To represent the physical importance of the considered model, some 3D, 2D, and density diagrams of acquired results are plotted by using Mathematica under the suitable choice of involving parameter values. Furthermore, all derived results were verified by putting them back into the assumed equation with the aid of Maple software. Further, the conservation laws of NLETLs are computed by the multiplier method

    A Variety of New Traveling Wave Packets and Conservation Laws to the Nonlinear Low-Pass Electrical Transmission Lines via Lie Analysis

    No full text
    This research is based on computing the new wave packets and conserved quantities to the nonlinear low-pass electrical transmission lines (NLETLs) via the group-theoretic method. By using the group-theoretic technique, we analyse the NLETLs and compute infinitesimal generators. The resulting equations concede two-dimensional Lie algebra. Then, we have to find the commutation relation of the entire vector field and observe that the obtained generators make an abelian algebra. The optimal system is computed by using the entire vector field and using the concept of abelian algebra. With the help of an optimal system, NLETLs convert into nonlinear ODE. The modified Khater method (MKM) is used to find the wave packets by using the resulting ODEs for a supposed model. To represent the physical importance of the considered model, some 3D, 2D, and density diagrams of acquired results are plotted by using Mathematica under the suitable choice of involving parameter values. Furthermore, all derived results were verified by putting them back into the assumed equation with the aid of Maple software. Further, the conservation laws of NLETLs are computed by the multiplier method

    Noval soliton solution, sensitivity and stability analysis to the fractional gKdV-ZK equation

    No full text
    Abstract This work examines the fractional generalized Korteweg-de-Vries-Zakharov-Kuznetsov equation (gKdV-ZKe) by utilizing three well-known analytical methods, the modified (G′G2)\left( \frac{G^{'}}{G^2}\right) G ′ G 2 -expansion method, (1G′)\left( \frac{1}{G^{'}}\right) 1 G ′ -expansion method and the Kudryashov method. The gKdV-ZK equation is a nonlinear model describing the influence of magnetic field on weak ion-acoustic waves in plasma made up of cool and hot electrons. The kink, singular, anti-kink, periodic, and bright soliton solutions are observed. The effect of the fractional parameter on wave shapes have been analyzed by displaying various graphs for fractional-order values of β\beta β . In addition, we utilize the Hamiltonian property to observe the stability of the attained solution and Galilean transformation for sensitivity analysis. The suggested methods can also be utilized to evaluate the nonlinear models that are being developed in a variety of scientific and technological fields, such as plasma physics. Findings show the effectiveness simplicity, and generalizability of the chosen computational approach, even when applied to complex models

    Effect of Dust Types on the Eco-Physiological Response of Three Tree Species Seedlings: <i>Eucalyptus camaldulensis</i>, <i>Conocarpus erectus</i> and <i>Bombax ceiba</i>

    No full text
    Dust is the collection of fine particles of solid matter, and it is a major issue of atmospheric pollution. Dust particles are becoming the major pollutants of the urban environment due to hyperbolic manufacturing and automobile pollution. These atmospheric pollutants are not only hazardous for human beings, but they also affect tree growth, particularly in urban environments. This study was designed to examine the changes in morphological and physiological traits of three tree species seedlings (Eucalyptus camaldulensis, Conocarpus erectus, and Bombax ceiba) in response to different dust types. In a pot experiment under controlled conditions, three-month-old seedlings of selected trees species were subjected to four treatments of dust: T1 = controlled; T2 = wood dust; T3 = soil dust; and T4 = carbon dust. During the whole experiment, 10 g/plant/dose was applied in 8 doses with a one-week interval. The results depicted that the growth was the maximum in T1 (control) and the minimum in T4 (carbon dust). In our findings, B. ceiba performed better under the same levels of dust pollution as compared with the other two tree species. The B. ceiba tree species proved to be the most tolerant to dust pollution by efficiently demolishing oxidative bursts by triggering SOD, POD, and CAT under different dust types compared to controlled conditions. Stomatal conductance, photosynthetic rate, and transpiration rate were negatively influenced in all three tree species in response to different dust applications. Based on the findings, among these three tree species, B. ceiba is recommended for dust polluted areas followed by E. camaldulensis and Conocarpus erectus due to their better performance and efficient dust-foraging potential

    Essential Oils of Five Baccharis Species: Investigations on the Chemical Composition and Biological Activities

    No full text
    This paper provides a comparative account of the essential oil chemical composition and biological activities of five Brazilian species of Baccharis (Asteraceae), namely B. microdonta, B. pauciflosculosa, B. punctulata, B. reticularioides, and B. sphenophylla. The chemical compositions of three species (B. pauciflosculosa, B. reticularioides, and B. sphenophylla) are reported for the first time. Analyses by GC/MS showed notable differences in the essential oil compositions of the five species. &alpha;-Pinene was observed in the highest concentration (24.50%) in B. reticularioides. Other major compounds included &alpha;-bisabolol (23.63%) in B. punctulata, spathulenol (24.74%) and kongol (22.22%) in B. microdonta, &beta;-pinene (18.33%) and limonene (18.77%) in B. pauciflosculosa, and &beta;-pinene (15.24%), limonene (14.33%), and spathulenol (13.15%) in B. sphenophylla. In vitro analyses for antimalarial, antitrypanosomal, and insecticidal activities were conducted for all of the species. B. microdonta and B. reticularioides showed good antitrypanosomal activities; B. sphenophylla showed insecticidal activities in fumigation bioassay against bed bugs; and B. pauciflosculosa, B. reticularioides, and B. sphenophylla exhibited moderate antimalarial activities. B. microdonta and B. punctulata showed cytotoxicity. The leaves and stems of all five species showed glandular trichomes and ducts as secretory structures. DNA barcoding successfully determined the main DNA sequences of the investigated species and enabled authenticating them
    corecore