15 research outputs found

    Effect of Solid Volume Fraction on Forced Convective Flow of Nanofluid through Direct Absorption Solar Collector

    Get PDF
    The present work numerically investigates the heat transfer performance and entropy generation of forced convection through a direct absorption solar collector. The working fluid is Cu-water nanofluid. The simulations focus specifically on the effect of solid volume fraction of nanoparticle on the mean Nusselt number, total entropy generation, Bejan number and collector efficiency. Also Isotherms, heat function and entropy generation are presented for various solid volume fraction. The governing partial differential equations are solved using penalty finite element method with Galerkins weighted residual technique. The results show that the mean Nusselt number and mean entropy generation increases as the volume fraction of Cu nanoparticles increases. The results presented in this study provide a useful source of reference for enhancing the force convection heat transfer performance while simultaneously reducing the entropy generation

    Effect of high irradiation on photovoltaic power and energy

    No full text
    Solar photovoltaics (PV) is a promising solution to combat against energy crisis and environmental pollution. However, the high manufacturing cost of solar cells along with the huge area required for well-sized PV power plants are the two major issues for the sustainable expansion of this technology. Concentrator technology is one of the solutions of the abovementioned problem. As concentrating the solar radiation over a single cell is now a proven technology, so attempt has been made in this article to extend this concept over PV module. High irradiation intensity from 1000 to 3000 W/m2 has been investigated to measure the power and energy of PV cell. The numerical simulation has been conducted using finite element technique. At 3000 W/m2 irradiation, the electrical power increases by about 190 W compared with 63 W at irradiation level of 1000 W/m2. At the same time, at 3000 W/m2 irradiation, the thermal energy increases by about 996 W compared with 362 W at 1000 W/m2 irradiation. Electrical power and thermal energy are enhanced by about 6.4 and 31.3 W, respectively, for each 100-W/m2 increase of solar radiation. The overall energy is increased by about 179.06% with increasing irradiation level from 1000 to 3000 W/m2. It is concluded that the effect of high solar radiation using concentrator can significantly improve the overall output of the PV module

    MHD FREE CONVECTION FLOW ALONG A VERTICAL FLAT PLATE WITH THERMAL CONDUCTIVITY AND VISCOSITY DEPENDING ON TEMPERATURE

    No full text
    In this present work the effects of temperature dependent viscosity and thermal conductivity on the coupling of conduction and Joule heating with MHD free convection flow along a semi-infinite vertical flat plate have been analyzed. The governing boundary layer equations with associated boundary conditions for this phenomenon are transformed to non-dimensional form using the appropriate variables. By the help of the implicit finite difference method with Keller–box scheme the resulting non-linear system of partial differential equation is then solved numerically. The purpose of this paper is to study the skin friction coefficient, the surface temperature, the velocity and the temperature profiles over the whole boundary layer for different values of the Prandtl number Pr, the magnetic parameter M, the thermal conductivity variation parameter γ, the viscosity variation parameter ε and the Joule heating parameter J. The results indicate that the flow pattern, temperature field and rate of heat transfer are significantly dependent on the above mentioned parameters. The local skin friction co-efficient and the surface temperature profiles for different values of ε are compared with previously published works and are found to be in good agreement

    Effect of high irradiation and cooling on power, energy and performance of a PVT system

    No full text
    Irradiation level is the key factor of photovoltaic power generation. Photovoltaic/thermal systems are more effective at concentrating power in areas of high irradiation as compared to traditional PV systems. High irradiation maintains the cell temperature and maximizes electrical-thermal energy. An optimum cooling system is required to remove the extra heat from a PVT system, leading to enhancement of overall performance. In this research, the effect of different high irradiation levels and cooling fluid flow rate are investigated in terms of cell temperature, outlet temperature, electrical-thermal energy and overall performance of PVT system. Finite element based software COMSOL Multiphysics has been used to solve the problem numerically in three-dimensional model. The numerical model has been validated with available experimental and numerical results. It is found that overall efficiency increases with increasing fluid flow rate and with an optimum cooling fluid flow rate of about 180 L/h. Electrical and thermal energy increase from 197 to 983 W and 1165–5387 W respectively, for increasing irradiation from 1000 to 5000 W/m2 with an optimized flow rate of 180 L/h. Electrical, thermal and overall efficiency are found to be about 10.6, 71 and 81.6% respectively, at the highest irradiation level of 5000 W/m2

    Effect of nanofluids on heat transfer and cooling system of the photovoltaic/thermal performance

    No full text
    Purpose: Effective cooling is one of the challenges for photovoltaic thermal (PVT) systems to maintain the PV operating temperature. One of the best ways to enhance rate of heat transfer of the PVT system is using advanced working fluids such as nanofluids. The purpose of this research is to develop a numerical model for designing different form of thermal collector systems with different materials. It is concluded that PVT system operated by nanofluid is more effective than water-based PVT system. Design/methodology/approach: In this research, a three-dimensional numerical model of PVT with new baffle-based thermal collector system has been developed and solved using finite element method-based COMSOL Multyphysics software. Water-based different nanofluids (Ag, Cu, Al, etc.), various solid volume fractions up to 3 per cent and variation of inlet temperature (20-40°C) have been applied to obtain high thermal efficiency of this system. Findings: The numerical results show that increasing solid volume fraction increases the thermal performance of PVT system operated by nanofluids, and optimum solid concentration is 2 per cent. The thermal efficiency is enhanced approximately by 7.49, 7.08 and 4.97 per cent for PVT system operated by water/Ag, water/Cu and water/Al nanofluids, respectively, compared to water. The extracted thermal energy from the PVT system decreases by 53.13, 52.69, 42.37 and 38.99 W for water, water/Al, water/Cu and water/Ag nanofluids, respectively, due to each 1°C increase in inlet temperature. The heat transfer rate from heat exchanger to cooling fluid enhances by about 18.43, 27.45 and 31.37 per cent for the PVT system operated by water/Al, water/Cu, water/Ag, respectively, compared to water. Originality/value: This study is original and is not being considered for publication elsewhere. This is also not currently under review with any other journal. © 2019, Emerald Publishing Limited

    Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research

    No full text
    In this research, an indoor experiment has been carried out of a PV module under controlled operating conditions and parameters. A novel design of thermal collector has been introduced, a complete PVT system assembled and water/MWCNT nanofluid used to enhance the thermal performance of PVT. An active cooling for PVT system has been maintained by using a centrifugal pump and a radiator have been used in the cycle to dissipate the heat of nanofluid in the environment to maintain proposed inlet temperature. 3D numerical simulation has been conducted with FEM based software COMSOL Multiphysics and validated by an indoor experimental research at different irradiation level from 200 to 1000 W/m2, weight fraction from 0 to 1% while keeping mass flow rate 0.5 L/min and inlet temperature 32 °C. The numerical results show a positive response to the experimental measurements. In experimental case, percentage of enhanced PV performance is found as 9.2% by using water cooling system. Higher thermal performance is obtained as approximately 4 and 3.67% in numerical and experimental studies, respectively by using nanofluid than water. In the PVT system operated by nanofluid at 1000 W/m2 irradiation, the numerical and experimental overall efficiency are found to be 89.2 and 87.65% respectively

    Numerical and outdoor real time experimental investigation of performance of PCM based PVT system

    No full text
    Photovoltaic power generation is a suitable option to counter depleting and environmentally hazardous fossil fuels. However, increased cell temperature of the photovoltaic module reduces the electrical performance. Therefore, for enhancing the electrical performance as well as to obtain the useful thermal, a combined photovoltaic thermal system is suitable technology. Furthermore, the addition of phase change materials into photovoltaic thermal systems adds more dual benefits in terms of cooling of PV cell as well as heat storage. Hence, there are still issues to transfer heat from the system efficiently, which cause lower performance of PVT and PVT-PCM systems. In this paper, the aluminium material of thermal collector is used by introducing a novel design to enhance heat transfer performance, which is assembled in PVT and PVT-PCM systems. Experimental validation is carried out for the 3D FEM-based numerical analysis with COMSOL Multiphysics® at 200 W/m2 to 1000 W/m2 varying irradiation levels while keeping mass flow rate fixed at 0.5LPM and inlet water temperature at 32 °C. The experiment is carried out at outdoor free weather conditions with passive cooling of the module by an overhead water tank scheme. A good agreement in numerical and experimental results is achieved through experimental validation. Cell temperature reduction of 12.6 °C and 10.3 °C is achieved from the PV module in case of the PVT-PCM system. The highest value of the electrical efficiency achieved is 13.72 13.56% for PV and 13.85 and 13.74% for PVT numerically and experimentally respectively. Similarly, for PVT-PCM, electrical efficiency is achieved as 13.98 and 13.87% numerically and experimentally respectively. In the case of the PVT system, electrical performance is improved as 6.2 and 4.8% and for PVT-PCM, it is improved as 7.2 and 7.6% for numerically and experimentally respectively
    corecore