22 research outputs found
Metapopulation dominance and genomic-island acquisition of Bradyrhizobium with superior catabolic capabilities
Root nodule-forming rhizobia exhibit a bipartite lifestyle, replicating in soil and also within plant cells where they fix nitrogen for legume hosts. Host control models posit that legume hosts act as a predominant selective force on rhizobia, but few studies have examined rhizobial fitness in natural populations. Here, we genotyped and phenotyped Bradyrhizobium isolates across more than 800 km of the native Acmispon strigosus host range. We sequenced chromosomal genes expressed under free-living conditions and accessory symbiosis loci expressed in planta and encoded on an integrated ‘symbiosis island’ (SI). We uncovered a massive clonal expansion restricted to the Bradyrhizobium chromosome, with a single chromosomal haplotype dominating populations, ranging more than 700 km, and acquiring 42 divergent SI haplotypes, none of which were spatially widespread. For focal genotypes, we quantified utilization of 190 sole-carbon sources relevant to soil fitness. Chromosomal haplotypes that were both widespread and dominant exhibited superior growth on diverse carbon sources, whereas these patterns were not mirrored among SI haplotypes. Abundance, spatial range and catabolic superiority of chromosomal, but not symbiosis genotypes suggests that fitness in the soil environment, rather than symbiosis with hosts, might be the key driver of Bradyrhizobium dominance
Metapopulation dominance and genomic-island acquisition of Bradyrhizobium with superior catabolic capabilities
Root nodule-forming rhizobia exhibit a bipartite lifestyle, replicating in soil and also within plant cells where they fix nitrogen for legume hosts. Host control models posit that legume hosts act as a predominant selective force on rhizobia, but few studies have examined rhizobial fitness in natural populations. Here, we genotyped and phenotyped Bradyrhizobium isolates across more than 800 km of the native Acmispon strigosus host range. We sequenced chromosomal genes expressed under free-living conditions and accessory symbiosis loci expressed in planta and encoded on an integrated ‘symbiosis island’ (SI). We uncovered a massive clonal expansion restricted to the Bradyrhizobium chromosome, with a single chromosomal haplotype dominating populations, ranging more than 700 km, and acquiring 42 divergent SI haplotypes, none of which were spatially widespread. For focal genotypes, we quantified utilization of 190 sole-carbon sources relevant to soil fitness. Chromosomal haplotypes that were both widespread and dominant exhibited superior growth on diverse carbon sources, whereas these patterns were not mirrored among SI haplotypes. Abundance, spatial range and catabolic superiority of chromosomal, but not symbiosis genotypes suggests that fitness in the soil environment, rather than symbiosis with hosts, might be the key driver of Bradyrhizobium dominance
Host investment into symbiosis varies among genotypes of the legume Acmispon strigosus, but host sanctions are uniform.
Efficient host control predicts the extirpation of ineffective symbionts, but they are nonetheless widespread in nature. We tested three hypotheses for the maintenance of symbiotic variation in rhizobia that associate with a native legume: partner mismatch between host and symbiont, such that symbiont effectiveness varies with host genotype; resource satiation, whereby extrinsic sources of nutrients relax host control; and variation in host control among host genotypes. We inoculated Acmispon strigosus from six populations with three Bradyrhizobium strains that vary in symbiotic effectiveness on sympatric hosts. We measured proxies of host and symbiont fitness in single- and co-inoculations under fertilization treatments of zero added nitrogen (N) and near-growth-saturating N. We examined two components of host control: 'host investment' into nodule size during single- and co-inoculations, and 'host sanctions' against less effective strains during co-inoculations. The Bradyrhizobium strains displayed conserved growth effects on hosts, and host control did not decline under experimental fertilization. Host sanctions were robust in all hosts, but host lines from different populations varied significantly in measures of host investment in both single- and co-inoculation experiments. Variation in host investment could promote variation in symbiotic effectiveness and prevent the extinction of ineffective Bradyrhizobium from natural populations
Recommended from our members
Efficiency of partner choice and sanctions in Lotus is not altered by nitrogen fertilization.
Eukaryotic hosts must exhibit control mechanisms to select against ineffective bacterial symbionts. Hosts can minimize infection by less-effective symbionts (partner choice) and can divest of uncooperative bacteria after infection (sanctions). Yet, such host-control traits are predicted to be context dependent, especially if they are costly for hosts to express or maintain. Legumes form symbiosis with rhizobia that vary in symbiotic effectiveness (nitrogen fixation) and can enforce partner choice as well as sanctions. In nature, legumes acquire fixed nitrogen from both rhizobia and soils, and nitrogen deposition is rapidly enriching soils globally. If soil nitrogen is abundant, we predict host control to be downregulated, potentially allowing invasion of ineffective symbionts. We experimentally manipulated soil nitrogen to examine context dependence in host control. We co-inoculated Lotus strigosus from nitrogen depauperate soils with pairs of Bradyrhizobium strains that vary in symbiotic effectiveness and fertilized plants with either zero nitrogen or growth maximizing nitrogen. We found efficient partner choice and sanctions regardless of nitrogen fertilization, symbiotic partner combination or growth season. Strikingly, host control was efficient even when L. strigosus gained no significant benefit from rhizobial infection, suggesting that these traits are resilient to short-term changes in extrinsic nitrogen, whether natural or anthropogenic
Recommended from our members
Biological soil crust community types differ in key ecological functions
Soil stability, nitrogen and carbon fixation were assessed for eight biological soil crust community types within a Mojave Desert wilderness site. Cyanolichen crust outperformed all other crusts in multi-functionality whereas incipient crust had the poorest performance. A finely divided classification of biological soil crust communities improves estimation of ecosystem function and strengthens the accuracy of landscape-scale assessments
Biological soil crust community types differ in key ecological functions
Soil stability, nitrogen and carbon fixation were assessed for eight biological soil crust community types within a Mojave Desert wilderness site. Cyanolichen crust outperformed all other crusts in multi-functionality whereas incipient crust had the poorest performance. A finely divided classification of biological soil crust communities improves estimation of ecosystem function and strengthens the accuracy of landscape-scale assessments
Cell autonomous sanctions in legumes target ineffective rhizobia in nodules with mixed infections.
Premise of the studyTo maximize benefits from symbiosis, legumes must limit physiological inputs into ineffective rhizobia that nodulate hosts without fixing nitrogen. The capacity of legumes to decrease the relative fitness of ineffective rhizobia-known as sanctions-has been demonstrated in several legume species, but its mechanisms remain unclear. Sanctions are predicted to work at the whole-nodule level. However, whole-nodule sanctions would make the host vulnerable to mixed-nodule infections, which have been demonstrated in the laboratory and observed in natural settings. Here, we present and test a cell-autonomous model of legume sanctions that can resolve this dilemma.MethodsWe analyzed histological and ultrastructural evidence of sanctions in two legume species, Acmispon strigosus and Lotus japonicus. For the former, we inoculated seedlings with rhizobia that naturally vary in their abilities to fix nitrogen. In the latter, we inoculated seedlings with near-isogenic strains that differ only in the ability to fix nitrogen.Key resultsIn both hosts, plants inoculated with ineffective rhizobia exhibited evidence for a cell autonomous and accelerated program of senescence within nodules. In plants that received mixed inoculations, only the plant cells harboring ineffective rhizobia exhibited features consistent with programmed cell death, including collapsed vacuoles, ruptured symbiosomes, and bacteroids that are released into the cytosol. These features were consistently linked with ultrastructural evidence of reduced survival of ineffective rhizobia in planta.ConclusionsOur data suggest an elegant cell autonomous mechanism by which legumes can detect and defend against ineffective rhizobia even when nodules harbor a mix of effective and ineffective rhizobial genotypes