396 research outputs found

    Detection and classification of supernovae beyond z~2 redshift with the James Webb Space Telescope

    Get PDF
    Future time-domain surveys for transient events in the near- and mid-infrared bands will significantly extend our understanding about the physics of the early Universe. In this paper we study the implications of a deep (~27 mag), long-term (~3 years), observationally inexpensive survey with the James Webb Space Telescope (JWST) within its Continuous Viewing Zone, aimed at discovering luminous supernovae beyond z~2 redshift. We explore the possibilities for detecting Superluminous Supernovae (SLSNe) as well as Type Ia supernovae at such high redshifts and estimate their expected numbers within a relatively small (~0.1 deg^2) survey area. It is found that we can expect ~10 new SLSNe and ~50 SNe Ia discovered in the 1 < z < 4 redshift range. We show that it is possible to get relatively accurate (sigma_z < 0.25) photometric redshifts for Type Ia SNe by fitting their Spectral Energy Distributions (SED), redshifted into the observed near-IR bands, with SN templates. We propose that Type Ia SNe occupy a relatively narrow range on the JWST F220W-F440W vs F150W-F356W color-color diagram between +/- 7 rest-frame days around maximum light, which could be a useful classification tool for such type of transients. We also study the possibility of extending the Hubble-diagram of Type Ia SNe beyond redshift 2 up to z~4. Such high-z SNe Ia may provide new observational constraints for their progenitor scenario.Comment: accepted for publication in Ap

    Detecting Pair-Instability Supernovae at z<5 with the James Webb Space Telescope

    Get PDF
    Pair-instability supernovae (PISNe) are the ultimate cosmic lighthouses, capable of being observed at z<25 and revealing the properties of primordial stars at cosmic dawn. But it is now understood that the spectra and light curves of these events evolved with redshift as the universe became polluted with heavy elements because chemically enriched stars in this mass range typically lose most of their hydrogen envelopes and explode as bare helium cores. The light curves of such transients can be considerably dimmer in the near infrared (NIR) today than those of primordial PISNe of equal energy and progenitor mass. Here, we calculate detection rates for PISNe whose progenitors lost their outer layers to either line-driven winds or rotation at z<10, their detection limit in redshift for the James Webb Space Telescope (JWST). We find that JWST may be able to detect only Pop II (metal-poor) PISNe over the redshift range of z<4, but not their Pop III (metal-free) counterparts.Comment: Accepted for ApJ, in pres

    Structure Formation with Cold + Hot Dark Matter

    Full text link
    We report results from high-resolution particle-mesh (PM) N-body simulations of structure formation in an Ω=1\Omega=1 cosmological model with a mixture of Cold plus Hot Dark Matter (C+HDM) having Ωcold=0.6\Omega_{\rm cold}=0.6, Ων=0.3\Omega_\nu=0.3, and Ωbaryon=0.1\Omega_{\rm baryon}=0.1. We present analytic fits to the C+HDM power spectra for both cold and hot (ν\nu) components, which provide initial conditions for our nonlinear simulations. In order to sample the neutrino velocities adequately, these simulations included six times as many neutrino particles as cold particles. Our simulation boxes were 14, 50, and 200~Mpc cubes (with H0=50H_0=50 km s1^{-1} Mpc1^{-1}); we also did comparison simulations for Cold Dark Matter (CDM) in a 50~Mpc box. C+HDM with linear bias factor b=1.5b=1.5 is consistent both with the COBE data and with the galaxy correlations we calculate. We find the number of halos as a function of mass and redshift in our simulations; our results for both CDM and C+HDM are well fit by a Press-Schechter model. The number density of galaxy-mass halos is smaller than for CDM, especially at redshift z>2z>2, but the numbers of cluster-mass halos are comparable. We also find that on galaxy scales the neutrino velocities and flatter power spectrum in C+HDM result in galaxy pairwise velocities that are in good agreement with the data, and about 30\% smaller than in CDM with the same biasing factor. On scales of several tens of Mpc, the C+HDM streaming velocities are considerably larger than CDM. Thus C+HDM looks promising as a model of structure formation.Comment: 33pp., 16+ figures not included (available by mail), SCIPP-92/5

    The Effect of the Hall Term on the Nonlinear Evolution of the Magnetorotational Instability: I. Local Axisymmetric Simulations

    Get PDF
    The effect of the Hall term on the evolution of the magnetorotational instability (MRI) in weakly ionized accretion disks is investigated using local axisymmetric simulations. First, we show that the Hall term has important effects on the MRI when the temperature and density in the disk is below a few thousand K and between 10^13 and 10^18 cm^{-3} respectively. Such conditions can occur in the quiescent phase of dwarf nova disks, or in the inner part (inside 10 - 100 AU) of protoplanetary disks. When the Hall term is important, the properties of the MRI are dependent on the direction of the magnetic field with respect to the angular velocity vector \Omega. If the disk is threaded by a uniform vertical field oriented in the same sense as \Omega, the axisymmetric evolution of the MRI is an exponentially growing two-channel flow without saturation. When the field is oppositely directed to \Omega, however, small scale fluctuations prevent the nonlinear growth of the channel flow and the MRI evolves into MHD turbulence. These results are anticipated from the characteristics of the linear dispersion relation. In axisymmetry on a field with zero-net flux, the evolution of the MRI is independent of the size of the Hall term relative to the inductive term. The evolution in this case is determined mostly by the effect of ohmic dissipation.Comment: 31 pages, 3 tables, 12 figures, accepted for publication in ApJ, postscript version also available from http://www.astro.umd.edu/~sano/publications

    La metodología interrogativa en la asignatura de Observación e innovación en el aula.

    Get PDF
    Es un estudio realizado sobre un profesor y las formas de interrogación que utiliza en sus clases para fomentar el aprendizaje autónomo en sus estudiantes

    The Effects of the Peak-Peak Correlation on the Peak Model of Hierarchical Clustering

    Get PDF
    In two previous papers a semi-analytical model was presented for the hierarchical clustering of halos via gravitational instability from peaks in a random Gaussian field of density fluctuations. This model is better founded than the extended Press-Schechter model, which is known to agree with numerical simulations and to make similar predictions. The specific merger rate, however, shows a significant departure at intermediate captured masses. The origin of this was suspected as being the rather crude approximation used for the density of nested peaks. Here, we seek to verify this suspicion by implementing a more accurate expression for the latter quantity which accounts for the correlation among peaks. We confirm that the inclusion of the peak-peak correlation improves the specific merger rate, while the good behavior of the remaining quantities is preserved.Comment: ApJ accepted. 15 pages, including 4 figures. Also available at ftp://pcess1.am.ub.es/pub/ApJ/effectpp.ps.g

    A study of relative velocity statistics in Lagrangian perturbation theory with PINOCCHIO

    Full text link
    Subject of this paper is a detailed analysis of the PINOCCHIO algorithm for studying the relative velocity statistics of merging haloes in Lagrangian perturbation theory. Given a cosmological background model, a power spectrum of fluctuations as well as a Gaussian linear density contrast field δl\delta_{\rm l} is generated on a cubic grid, which is then smoothed repeatedly with Gaussian filters. For each Lagrangian particle at position \bmath{q} and each smoothing radius RR, the collapse time, the velocities and ellipsoidal truncation are computed using Lagrangian Perturbation Theory. The collapsed medium is then fragmented into isolated objects by an algorithm designed to mimic the accretion and merger events of hierarchical collapse. Directly after the fragmentation process the mass function, merger histories of haloes and the statistics of the relative velocities at merging are evaluated. We reimplemented the algorithm in C++, recovered the mass function and optimised the construction of halo merging histories. Comparing our results with the output of the Millennium simulation suggests that PINOCCHIO is well suited for studying relative velocities of merging haloes and is able to reproduce the pairwise velocity distribution.Comment: 10 pages, 8 figure

    Redshift-space limits of bound structures

    Get PDF
    An exponentially expanding Universe, possibly governed by a cosmological constant, forces gravitationally bound structures to become more and more isolated, eventually becoming causally disconnected from each other and forming so-called "island universes". This new scenario reformulates the question about which will be the largest structures that will remain gravitationally bound, together with requiring a systematic tool that can be used to recognize the limits and mass of these structures from observational data, namely redshift surveys of galaxies. Here we present a method, based on the spherical collapse model and N-body simulations, by which we can estimate the limits of bound structures as observed in redshift space. The method is based on a theoretical criterion presented in a previous paper that determines the mean density contrast that a spherical shell must have in order to be marginally bound to the massive structure within it. Understanding the kinematics of the system, we translated the real-space limiting conditions of this "critical" shell to redshift space, producing a projected velocity envelope that only depends on the density profile of the structure. From it we created a redshift-space version of the density contrast that we called "density estimator", which can be calibrated from N-body simulations for a reasonable projected velocity envelope template, and used to estimate the limits and mass of a structure only from its redshift-space coordinates.Comment: Contains 12 pages, 12 figures and 8 table

    Topological Defects in an Open Universe

    Get PDF
    (To appear in Nuclear Physics B Supplements Proceedings section) This talk will explore the evolution of topological defects in an open universe. The rapid expansion of the universe in an open model slows defects and suppresses the generation of CBR fluctuations at large angular scale as does the altered relationship between angle and length in an open universe. Defect models, when normalized to COBE in an open universe, predict a galaxy power spectrum consistent with the galaxy power spectrum inferred from the galaxy surveys and do not require an extreme bias. Neither defect models in a flat universe nor standard inflationary models can fit either the multipole spectrum or the power spectrum inferred from galaxy surveys.Comment: 11 pages and 4 figures, Elsevier Publisher's LaTeX, POP-54

    Low-Mass Binary Induced Outflows from Asymptotic Giant Branch Stars

    Get PDF
    A significant fraction of planetary nebulae (PNe) and proto-planetary nebulae (PPNe) exhibit aspherical, axisymmetric structures, many of which are highly collimated. The origin of these structures is not entirely understood, however recent evidence suggests that many observed PNe harbor binary systems, which may play a role in their shaping. In an effort to understand how binaries may produce such asymmetries, we study the effect of low-mass (< 0.3 M_sun) companions (planets, brown dwarfs and low-mass main sequence stars) embedded into the envelope of a 3.0 M_sun star during three epochs of its evolution (Red Giant Branch, Asymptotic Giant Branch (AGB), interpulse AGB). We find that common envelope evolution can lead to three qualitatively different consequences: (i) direct ejection of envelope material resulting in a predominately equatorial outflow, (ii) spin-up of the envelope resulting in the possibility of powering an explosive dynamo driven jet and (iii) tidal shredding of the companion into a disc which facilitates a disc driven jet. We study how these features depend on the secondary's mass and discuss observational consequences.Comment: 24 pages, 6 figures, submitted to MNRA
    corecore