937 research outputs found

    Defining a bulk-edge correspondence for non-Hermitian Hamiltonians via singular-value decomposition

    Full text link
    We address the breakdown of the bulk-boundary correspondence observed in non-Hermitian systems, where open and periodic systems can have distinct phase diagrams. The correspondence can be completely restored by considering the Hamiltonian's singular value decomposition instead of its eigendecomposition. This leads to a natural topological description in terms of a flattened singular decomposition. This description is equivalent to the usual approach for Hermitian systems and coincides with a recent proposal for the classification of non-Hermitian systems. We generalize the notion of the entanglement spectrum to non-Hermitian systems, and show that the edge physics is indeed completely captured by the periodic bulk Hamiltonian. We exemplify our approach by considering the chiral non-Hermitian Su-Schrieffer-Heger and Chern insulator models. Our work advocates a different perspective on topological non-Hermitian Hamiltonians, paving the way to a better understanding of their entanglement structure.Comment: 6+5 pages, 8 figure

    S3 Quantum Hall Wavefunctions

    Full text link
    We construct a family of quantum Hall Hamiltonians whose ground states, at least for small system sizes, give correlators of the S3 conformal field theories. The ground states are considered as trial wavefunctions for quantum Hall effect of bosons at filling fraction nu=3/4 interacting either via delta function interaction or delta function plus dipole interaction. While the S3 theories can be either unitary or nonunitary, we find high overlaps with exact diagonalizations only for the nonunitary case, suggesting that these wavefunctions may correspond to critical points, possibly analogous to the previously studied Gaffnian wavefunction. These wavefunctions give an explicit example which cannot be fully characterized by their thin-torus limit or by their pattern of zeros.Comment: 4+epsilon pages. 1 figure. Revised version includes: 1 additional author; additional numerical work; several minor corrections. Our main results are unchange

    Spin-singlet Gaffnian wave function for fractional quantum Hall systems

    Full text link
    We characterize in detail a wave function conceivable in fractional quantum Hall systems where a spin or equivalent degree of freedom is present. This wave function combines the properties of two previously proposed quantum Hall wave functions, namely the non-Abelian spin-singlet state and the nonunitary Gaffnian wave function. This is a spin-singlet generalization of the spin-polarized Gaffnian, which we call the "spin-singlet Gaffnian" (SSG). In this paper we present evidence demonstrating that the SSG corresponds to the ground state of a certain local Hamiltonian, which we explicitly construct, and, further, we provide a relatively simple analytic expression for the unique ground-state wave functions, which we define as the zero energy eigenstates of that local Hamiltonian. In addition, we have determined a certain nonunitary, rational conformal field theory which provides an underlying description of the SSG and we thus conclude that the SSG is ungapped in the thermodynamic limit. In order to verify our construction, we implement two recently proposed techniques for the analysis of fractional quantum Hall trial states: The "spin dressed squeezing algorithm", and the "generalized Pauli principle".Comment: 15 pages, 2 figures. Version 3 fixes a typographical error in the Hamiltonian, Eq 3. Version 2 incorporates referee and editorial suggestions. The original title "Putting a Spin on the Gaffnian" was deemed to be too inappropriate for PR

    Dynamics of composite Haldane spin chains in IPA-CuCl3

    Full text link
    Magnetic excitations in the quasi-one-dimensional antiferromagnet IPA-CuCl3 are studied by cold neutron inelastic scattering. Strongly dispersive gap excitations are observed. Contrary to previously proposed models, the system is best described as an asymmetric quantum spin ladder. The observed spectrum is interpreted in terms of ``composite'' Haldane spin chains. The key difference from actual S=1 chains is a sharp cutoff of the single-magnon spectrum at a certain critical wave vector.Comment: 4 pages 4 figure

    Scaling of the magnetic response in doped antiferromagnets

    Full text link
    A theory of the anomalous ω/T\omega/T scaling of the dynamic magnetic response in cuprates at low doping is presented. It is based on the memory function representation of the dynamical spin suceptibility in a doped antiferromagnet where the damping of the collective mode is constant and large, whereas the equal-time spin correlations saturate at low TT. Exact diagonalization results within the t-J model are shown to support assumptions. Consequences, both for the scaling function and the normalization amplitude, are well in agreement with neutron scattering results.Comment: 4 pages, 4 figure

    Evidence for an incommensurate magnetic resonance in La(2-x)Sr(x)CuO(4)

    Full text link
    We study the effect of a magnetic field (applied along the c-axis) on the low-energy, incommensurate magnetic fluctuations in superconducting La(1.82)Sr(0.18)CuO(4). The incommensurate peaks at 9 meV, which in zero-field were previously shown to sharpen in q on cooling below T_c [T. E. Mason et al., Phys. Rev. Lett. 77, 1604 (1996)], are found to broaden in q when a field of 10 T is applied. The applied field also causes scattered intensity to shift into the spin gap. We point out that the response at 9 meV, though occurring at incommensurate wave vectors, is comparable to the commensurate magnetic resonance observed at higher energies in other cuprate superconductors.Comment: 8 pages, including 4 figure

    Elementary Excitations in Quantum Antiferromagnetic Chains: Dyons, Spinons and Breathers

    Full text link
    Considering experimental results obtained on three prototype compounds, TMMC, CsCoCl3 (or CsCoBr3) and Cu Benzoate, we discuss the importance of non-linear excitations in the physics of quantum (and classical) antiferromagnetic spin chains.Comment: Invited at the International Symposium on Cooperative Phenomena of Assembled Metal Complexes, November 15-17, 2001, Osaka, Japa

    Spin-resonance modes of the spin-gap magnet TlCuCl_3

    Full text link
    Three kinds of magnetic resonance signals were detected in crystals of the spin-gap magnet TlCuCl_3. First, we have observed the microwave absorption due to the excitation of the transitions between the singlet ground state and the excited triplet states. This mode has the linear frequency-field dependence corresponding to the previously known value of the zero-field spin-gap of 156 GHz and to the closing of spin-gap at the magnetic field H_c of about 50 kOe. Second, the thermally activated resonance absorption due to the transitions between the spin sublevels of the triplet excitations was found. These sublevels are split by the crystal field and external magnetic field. Finally, we have observed antiferromagnetic resonance absorption in the field-induced antiferromagnetic phase above the critical field H_c. This resonance frequency is strongly anisotropic with respect to the direction of the magnetic field.Comment: v.2: typo correction (one of the field directions was misprinted in the v.1
    • 

    corecore