933 research outputs found

    Emergent Many-Body Translational Symmetries of Abelian and Non-Abelian Fractionally Filled Topological Insulators

    Full text link
    The energy and entanglement spectrum of fractionally filled interacting topological insulators exhibit a peculiar manifold of low energy states separated by a gap from a high energy set of spurious states. In the current manuscript, we show that in the case of fractionally filled Chern insulators, the topological information of the many-body state developing in the system resides in this low-energy manifold. We identify an emergent many-body translational symmetry which allows us to separate the states in quasi-degenerate center of mass momentum sectors. Within one center of mass sector, the states can be further classified as eigenstates of an emergent (in the thermodynamic limit) set of many-body relative translation operators. We analytically establish a mapping between the two-dimensional Brillouin zone for the Fractional Quantum Hall effect on the torus and the one for the fractional Chern insulator. We show that the counting of quasi-degenerate levels below the gap for the Fractional Chern Insulator should arise from a folding of the states in the Fractional Quantum Hall system at identical filling factor. We show how to count and separate the excitations of the Laughlin, Moore-Read and Read-Rezayi series in the Fractional Quantum Hall effect into two-dimensional Brillouin zone momentum sectors, and then how to map these into the momentum sectors of the Fractional Chern Insulator. We numerically check our results by showing the emergent symmetry at work for Laughlin, Moore-Read and Read-Rezayi states on the checkerboard model of a Chern insulator, thereby also showing, as a proof of principle, that non-Abelian Fractional Chern Insulators exist.Comment: 32 pages, 9 figure

    Correlation Lengths and Topological Entanglement Entropies of Unitary and Non-Unitary Fractional Quantum Hall Wavefunctions

    Full text link
    Using the newly developed Matrix Product State (MPS) formalism for non-abelian Fractional Quantum Hall (FQH) states, we address the question of whether a FQH trial wave function written as a correlation function in a non-unitary Conformal Field Theory (CFT) can describe the bulk of a gapped FQH phase. We show that the non-unitary Gaffnian state exhibits clear signatures of a pathological behavior. As a benchmark we compute the correlation length of Moore-Read state and find it to be finite in the thermodynamic limit. By contrast, the Gaffnian state has infinite correlation length in (at least) the non-Abelian sector, and is therefore gapless. We also compute the topological entanglement entropy of several non-abelian states with and without quasiholes. For the first time in FQH the results are in excellent agreement in all topological sectors with the CFT prediction for unitary states. For the non-unitary Gaffnian state in finite size systems, the topological entanglement entropy seems to behave like that of the Composite Fermion Jain state at equal filling.Comment: 5 pages, 5 figures, and supplementary material. Published versio

    D-Algebra Structure of Topological Insulators

    Full text link
    In the quantum Hall effect, the density operators at different wave-vectors generally do not commute and give rise to the Girvin MacDonald Plazmann (GMP) algebra with important consequences such as ground-state center of mass degeneracy at fractional filling fraction, and W_{1 + \infty} symmetry of the filled Landau levels. We show that the natural generalization of the GMP algebra to higher dimensional topological insulators involves the concept of a D-algebra formed by using the fully anti-symmetric tensor in D-dimensions. For insulators in even dimensional space, the D-algebra is isotropic and closes for the case of constant non-Abelian F(k) ^ F(k) ... ^ F(k) connection (D-Berry curvature), and its structure factors are proportional to the D/2-Chern number. In odd dimensions, the algebra is not isotropic, contains the weak topological insulator index (layers of the topological insulator in one less dimension) and does not contain the Chern-Simons \theta form (F ^ A - 2/3 A ^ A ^ A in 3 dimensions). The Chern-Simons form appears in a certain combination of the parallel transport and simple translation operator which is not an algebra. The possible relation to D-dimensional volume preserving diffeomorphisms and parallel transport of extended objects is also discussed.Comment: 5 page

    Matrix Product State Description and Gaplessness of the Haldane-Rezayi State

    Full text link
    We derive an exact matrix product state representation of the Haldane-Rezayi state on both the cylinder and torus geometry. Our derivation is based on the description of the Haldane-Rezayi state as a correlator in a non-unitary logarithmic conformal field theory. This construction faithfully captures the ten degenerate ground states of this model state on the torus. Using the cylinder geometry, we probe the gapless nature of the phase by extracting the correlation length, which diverges in the thermodynamic limit. The numerically extracted topological entanglement entropies seem to only probe the Abelian part of the theory, which is reminiscent of the Gaffnian state, another model state deriving from a non-unitary conformal field theory.Comment: Corrected labels in Fig.

    Extracting Excitations From Model State Entanglement

    Full text link
    We extend the concept of entanglement spectrum from the geometrical to the particle bipartite partition. We apply this to several Fractional Quantum Hall (FQH) wavefunctions on both sphere and torus geometries to show that this new type of entanglement spectra completely reveals the physics of bulk quasihole excitations. While this is easily understood when a local Hamiltonian for the model state exists, we show that the quasiholes wavefunctions are encoded within the model state even when such a Hamiltonian is not known. As a nontrivial example, we look at Jain's composite fermion states and obtain their quasiholes directly from the model state wavefunction. We reach similar conclusions for wavefunctions described by Jack polynomials.Comment: 5 pages, 7 figures, updated versio

    Z2\mathbb Z_2 fractional topological insulators in two dimensions

    Full text link
    We propose a simple microscopic model to numerically investigate the stability of a two dimensional fractional topological insulator (FTI). The simplest example of a FTI consists of two decoupled copies of a Laughlin state with opposite chiralities. We focus on bosons at half filling. We study the stability of the FTI phase upon addition of two coupling terms of different nature: an interspin interaction term, and an inversion symmetry breaking term that couples the copies at the single particle level. Using exact diagonalization and entanglement spectra, we numerically show that the FTI phase is stable against both perturbations. We compare our system to a similar bilayer fractional Chern insulator. We show evidence that the time reversal invariant system survives the introduction of interaction coupling on a larger scale than the time reversal symmetry breaking one, stressing the importance of time reversal symmetry in the FTI phase stability. We also discuss possible fractional phases beyond Μ=1/2\nu = 1/2.Comment: 15 pages, 18 figure

    Eta-Pairing in Hubbard Models: From Spectrum Generating Algebras to Quantum Many-Body Scars

    Full text link
    We revisit the η\eta-pairing states in Hubbard models and explore their connections to quantum many-body scars to discover a universal scars mechanism. η\eta-pairing occurs due to an algebraic structure known as a Spectrum Generating Algebra (SGA), giving rise to equally spaced towers of eigenstates in the spectrum. We generalize the original η\eta-pairing construction and show that several Hubbard-like models on arbitrary graphs exhibit SGAs, including ones with disorder and spin-orbit coupling. We further define a Restricted Spectrum Generating Algebra (RSGA) and give examples of perturbations to the Hubbard-like models that preserve an equally spaced tower of the original model as eigenstates. The states of the surviving tower exhibit a sub-thermal entanglement entropy, and we analytically obtain parameter regimes for which they lie in the bulk of the spectrum, showing that they are exact quantum many-body scars. The RSGA framework also explains the equally spaced towers of eigenstates in several well-known models of quantum scars, including the AKLT model.Comment: 13 pages v2: typos corrected, references adde

    Matrix Product States for Trial Quantum Hall States

    Full text link
    We obtain an exact matrix-product-state (MPS) representation of a large series of fractional quantum Hall (FQH) states in various geometries of genus 0. The states in question include all paired k=2 Jack polynomials, such as the Moore-Read and Gaffnian states, as well as the Read-Rezayi k=3 state. We also outline the procedures through which the MPS of other model FQH states can be obtained, provided their wavefunction can be written as a correlator in a 1+1 conformal field theory (CFT). The auxiliary Hilbert space of the MPS, which gives the counting of the entanglement spectrum, is then simply the Hilbert space of the underlying CFT. This formalism enlightens the link between entanglement spectrum and edge modes. Properties of model wavefunctions such as the thin-torus root partitions and squeezing are recast in the MPS form, and numerical benchmarks for the accuracy of the new MPS prescription in various geometries are provided.Comment: 5 pages, 1 figure, published versio
    • 

    corecore