4,667 research outputs found
A Story of Parametric Trace Slicing, Garbage and Static Analysis
This paper presents a proposal (story) of how statically detecting
unreachable objects (in Java) could be used to improve a particular runtime
verification approach (for Java), namely parametric trace slicing. Monitoring
algorithms for parametric trace slicing depend on garbage collection to (i)
cleanup data-structures storing monitored objects, ensuring they do not become
unmanageably large, and (ii) anticipate the violation of (non-safety)
properties that cannot be satisfied as a monitored object can no longer appear
later in the trace. The proposal is that both usages can be improved by making
the unreachability of monitored objects explicit in the parametric property and
statically introducing additional instrumentation points generating related
events. The ideas presented in this paper are still exploratory and the
intention is to integrate the described techniques into the MarQ monitoring
tool for quantified event automata.Comment: In Proceedings PrePost 2017, arXiv:1708.0688
On algebraic time-derivative estimation and deadbeat state reconstruction
This note places into perspective the so-called algebraic time-derivative
estimation method recently introduced by Fliess and co-authors with standard
results from linear state-space theory for control systems. In particular, it
is shown that the algebraic method can in a sense be seen as a special case of
deadbeat state estimation based on the reconstructibility Gramian of the
considered system.Comment: Maple-supplements available at
https://www.tu-ilmenau.de/regelungstechnik/mitarbeiter/johann-reger
Experimental development of processes to produce homogenized alloys of immiscible metals, phase 3
An experimental drop tower package was designed and built for use in a drop tower. This effort consisted of a thermal analysis, container/heater fabrication, and assembly of an expulsion device for rapid quenching of heated specimens during low gravity conditions. Six gallium bismuth specimens with compositions in the immiscibility region (50 a/o of each element) were processed in the experimental package: four during low gravity conditions and two under a one gravity environment. One of the one gravity processed specimens did not have telemetry data and was subsequently deleted for analysis since the processing conditions were not known. Metallurgical, Hall effect, resistivity, and superconductivity examinations were performed on the five specimens. Examination of the specimens showed that the gallium was dispersed in the bismuth. The low gravity processed specimens showed a relatively uniform distribution of gallium, with particle sizes of 1 micrometer or less, in contrast to the one gravity control specimen. Comparison of the cooling rates of the dropped specimens versus microstructure indicated that low cooling rates are more desirable
Vortex glass transitions in disordered three-dimensional XY models: Simulations for several different sets of parameters
The anisotropic frustrated 3D XY model with strong disorder in the coupling
constants is studied as a model of a disordered superconductor in an applied
magnetic field. Simulations with the exchange Monte Carlo method are performed
for frustrations f=1/5 and f=1/4, corresponding to two different values of the
magnetic field along the z direction. The anisotropy is also varied. The
determination of the helicity modulus from twist histograms is discussed in
some detail and the helicity modulus is used in finite size scaling analyses of
the vortex glass transition. The general picture is that the behavior in [Phys.
Rev. Lett. 91, 077002 (2003)] is confirmed. For strong (e.g. isotropic)
coupling in the z direction the helicity modulus fails to scale and it is
argued that this is due to a too small effective randomness of such systems for
the accessible system sizes
Nitrogen tetroxide flow decay study for the Orbital Workshop Propulsion System Final report
Flow decay of nitrogen tetroxide in Orbital Workshop Propulsion Syste
Neel to staggered dimer order transition in a generalized honeycomb lattice Heisenberg model
We study a generalized honeycomb lattice spin-1/2 Heisenberg model with
nearest-neighbor antiferromagnetic 2-spin exchange, and competing 4-spin
interactions which serve to stabilize a staggered dimer state which breaks
lattice rotational symmetry. Using a combination of quantum Monte Carlo
numerics, spin wave theory, and bond operator theory, we show that this model
undergoes a strong first-order transition between a Neel state and a staggered
dimer state upon increasing the strength of the 4-spin interactions. We
attribute the strong first order character of this transition to the spinless
nature of the core of point-like Z(3) vortices obtained in the staggered dimer
state. Unlike in the case of a columnar dimer state, disordering such vortices
in the staggered dimer state does not naturally lead to magnetic order,
suggesting that, in this model, the dimer and Neel order parameters should be
thought of as independent fields as in conventional Landau theory.Comment: 13 pages, 10 fig
- …