62 research outputs found

    Spatially targeting Culex quinquefasciatus aquatic habitats on modified land cover for implementing an Integrated Vector Management (IVM) program in three villages within the Mwea Rice Scheme, Kenya

    Get PDF
    BACKGROUND: Continuous land cover modification is an important part of spatial epidemiology because it can help identify environmental factors and Culex mosquitoes associated with arbovirus transmission and thus guide control intervention. The aim of this study was to determine whether remotely sensed data could be used to identify rice-related Culex quinquefasciatus breeding habitats in three rice-villages within the Mwea Rice Scheme, Kenya. We examined whether a land use land cover (LULC) classification based on two scenes, IKONOS at 4 m and Landsat Thematic Mapper at 30 m could be used to map different land uses and rice planted at different times (cohorts), and to infer which LULC change were correlated to high density Cx. quinquefasciatus aquatic habitats. We performed a maximum likelihood unsupervised classification in Erdas Imagine V8.7(® )and generated three land cover classifications, rice field, fallow and built environment. Differentially corrected global positioning systems (DGPS) ground coordinates of Cx. quinquefasciatus aquatic habitats were overlaid onto the LULC maps generated in ArcInfo 9.1(®). Grid cells were stratified by levels of irrigation (well-irrigated and poorly-irrigated) and varied according to size of the paddy. RESULTS: Total LULC change between 1988–2005 was 42.1 % in Kangichiri, 52.8 % in Kiuria and and 50.6 % Rurumi. The most frequent LULC changes was rice field to fallow and fallow to rice field. The proportion of aquatic habitats positive for Culex larvae in LULC change sites was 77.5% in Kangichiri, 72.9% in Kiuria and 73.7% in Rurumi. Poorly – irrigated grid cells displayed 63.3% of aquatic habitats among all LULC change sites. CONCLUSION: We demonstrate that optical remote sensing can identify rice cultivation LULC sites associated with high Culex oviposition. We argue that the regions of higher Culex abundance based on oviposition surveillance sites reflect underlying differences in abundance of larval habitats which is where limited control resources could be concentrated to reduce vector larval abundance

    Hydrological modeling of geophysical parameters of arboviral and protozoan disease vectors in Internally Displaced People camps in Gulu, Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to determine if remotely sensed data and Digital Elevation Model (DEM) can test relationships between <it>Culex quinquefasciatus </it>and <it>Anopheles gambiae </it>s.l. larval habitats and environmental parameters within Internally Displaced People (IDP) campgrounds in Gulu, Uganda. A total of 65 georeferenced aquatic habitats in various IDP camps were studied to compare the larval abundance of <it>Cx. quinquefasciatus </it>and <it>An. gambiae </it>s.l. The aquatic habitat dataset were overlaid onto Land Use Land Cover (LULC) maps retrieved from Landsat imagery with 150 m × 150 m grid cells stratified by levels of drainage. The LULC change was estimated over a period of 14 years. Poisson regression analyses and Moran's <it>I </it>statistics were used to model relationships between larval abundance and environmental predictors. Individual larval habitat data were further evaluated in terms of their covariations with spatial autocorrelation by regressing them on candidate spatial filter eigenvectors. Multispectral QuickBird imagery classification and DEM-based GIS methods were generated to evaluate stream flow direction and accumulation for identification of immature <it>Cx. quinquefasciatus </it>and <it>An. gambiae </it>s.l. and abundance.</p> <p>Results</p> <p>The main LULC change in urban Gulu IDP camps was non-urban to urban, which included about 71.5 % of the land cover. The regression models indicate that counts of <it>An. gambiae </it>s.l. larvae were associated with shade while <it>Cx. quinquefasciatus </it>were associated with floating vegetation. Moran's <it>I </it>and the General G statistics for mosquito density by species and instars, identified significant clusters of high densities of <it>Anopheles</it>; larvae, however, <it>Culex </it>are not consistently clustered. A stepwise negative binomial regression decomposed the immature <it>An. gambiae </it>s.l. data into empirical orthogonal bases. The data suggest the presence of roughly 11% to 28 % redundant information in the larval count samples. The DEM suggest a positive correlation for <it>Culex </it>(0.24) while for <it>Anopheles </it>there was a negative correlation (-0.23) for a local model distance to stream.</p> <p>Conclusion</p> <p>These data demonstrate that optical remote sensing; geostatistics and DEMs can be used to identify parameters associated with <it>Culex </it>and <it>Anopheles </it>aquatic habitats.</p

    Spatial Estimation of Populations at Risk from Radiological Dispersion Device Terrorism Incidents -8408

    No full text
    ABSTRACT Delineation of the location and size of the population potentially at risk of exposure to ionizing radiation is one of the key analytical challenges in estimating accurately the severity of the potential health effects associated with a radiological terrorism incident. Regardless of spatial scale, the geographical units for which population data commonly are collected rarely coincide with the geographical scale necessary for effective incident management and medical response. This paper identifies major government and commercial open sources of U.S. population data and presents a GIS-based approach for allocating publicly available population data, including age distributions, to geographical units appropriate for planning and implementing incident management and medical response strategies

    STATE ENERGY POLICIES: FEDERAL FUNDS FOR PAPER PROGRAMS

    No full text
    Taking their policy cues from the federal government, the states have done little to effectively deal with energy problems. In fact, their programs could be styled "federal funds for paper programs." inasmuch as the state programs have been written to conform to federal language, but not to attack energy problems in a serious fashion. There is great variation among the states in energy program expenditures, but these are not related to economic or political structures. However, the more urbanized, economically growing, and energy "rich" states spend the most on energy problems. Copyright 1981 by The Policy Studies Organization.

    Patterns of <it>Plasmodium vivax </it>and <it>Plasmodium falciparum </it>malaria underscore importance of data collection from private health care facilities in India

    No full text
    Abstract Background This study describes patterns of falciparum and vivax malaria in a private comprehensive-care, multi-specialty hospital in New Delhi from July 2006 to July 2008. Methods Malarial morbidity by Plasmodium species (Plasmodium falciparum, Plasmodium vivax, or Plasmodium sp.) was confirmed using microscopy and antigen tests. The influence of seasonal factors and selected patient demographics on morbidity was evaluated. The proportions of malaria cases caused by P. falciparum at the private facility were compared to data from India's National Vector Borne Disease Control Programme (NVBDCP) during the same period for the Delhi region. Results In New Delhi, P. faciparum was the dominant cause of cases requiring treatment in the private hospital during the period examined. The national data reported a smaller proportion of malaria cases caused by P. falciparum in the national capital region than was observed in a private facility within the region. Plasmodium vivax also caused a large proportion of the cases presenting clinically at the private hospital during the summer and monsoon seasons. Conclusion The proportion of P. falciparum malaria cases tends to be greatest during the post-monsoon season while the proportion of P. vivax malaria cases tends to be greatest in the monsoon season. Private hospital data demonstrate an under-reporting of malaria case incidences in the data from India's national surveillance programme during the same period for the national capital region.</p

    Source reduction of mosquito larval habitats has unexpected consequences on malaria transmission

    No full text
    Reduction of aquatic habitats through environmental management mitigates malaria transmission not only by reducing emergence of host-seeking mosquitoes, but also by increasing the amount of time required for vectors to locate oviposition sites. However, the consequence of source reduction on mosquito oviposition has largely been neglected in evaluations of environment-management programs. Here, by theoretically examining the relationship between the time spent for oviposition and the availability of aquatic habitats, we show that prolonged oviposition cycles induced by source reduction account for a great deal of reductions in the basic reproductive rate of malaria, especially when aquatic habitats are scarce and the mosquito's flight ability is limited. Neglecting this mechanism may lead to substantial underestimation of the impact of source reduction of aquatic habitats on malaria transmission. Our findings suggest that the prolonged duration of the gonotrophic cycle might be one of the important mechanisms underlying the effectiveness of environment-management interventions for malaria control
    • …
    corecore