614 research outputs found
High Efficiency Detection of Argon Scintillation Light of 128nm Using LAAPDs
The possibility of efficient collection and detection of vacuum ultraviolet
light as emitted by argon, krypton, and xenon gas is studied. Absolute quantum
efficiencies of large area avalanche photodiodes (LAAPDs) are derived at these
wavelengths. VUV light of wavelengths down to the 128nm of Ar emission is shown
to be detectable with silicon avalanche photodiodes at quantum efficiencies
above 42%. Flexible Mylar foil overcoated with Al+MgF is measured to have a
specular reflectivity of 91% at argon emission wavelength. Low-pressure
argon gas is shown to emit significant amounts of non-UV radiation. The average
energy expenditure for the creation of non-UV photons in argon gas at this
pressure is measured to be below 378 eV.Comment: 5 pages, 4 figures, Talk given at IEEE 2005 Nuclear Science Symposium
and Medical Imaging Conference, Puerto Ric
The Argon Dark Matter Experiment (ArDM)
The ArDM experiment, a 1 ton liquid argon TPC/Calorimeter, is designed for
the detection of dark matter particles which can scatter off the spinless argon
nuclei. These events producing a recoiling nucleus will be discerned by their
light to charge ratio, as well as the time structure of the scintillation
light. The experiment is presently under construction and will be commissioned
on surface at CERN. Here we describe the detector concept and give a short
review on the main detector components.Comment: Proceedings of 4th Patras workshop (DESY) on Axions, Wimps and Wisps
(4 pages, 4 figures
Luminescence quenching of the triplet excimer state by air traces in gaseous argon
While developing a liquid argon detector for dark matter searches we
investigate the influence of air contamination on the VUV scintillation yield
in gaseous argon at atmospheric pressure. We determine with a radioactive
alpha-source the photon yield for various partial air pressures and different
reflectors and wavelength shifters. We find for the fast scintillation
component a time constant tau1= 11.3 +- 2.8 ns, independent of gas purity.
However, the decay time of the slow component depends on gas purity and is a
good indicator for the total VUV light yield. This dependence is attributed to
impurities destroying the long-lived argon excimer states. The population ratio
between the slowly and the fast decaying excimer states is determined for
alpha-particles to be 5.5 +-0.6 in argon gas at 1100 mbar and room temperature.
The measured mean life of the slow component is tau2 = 3.140 +- 0.067 microsec
at a partial air pressure of 2 x 10-6 mbar.Comment: 7 pages submitted to NIM
Study of nuclear recoils in liquid argon with monoenergetic neutrons
For the development of liquid argon dark matter detectors we assembled a
setup in the laboratory to scatter neutrons on a small liquid argon target. The
neutrons are produced mono-energetically (E_kin=2.45 MeV) by nuclear fusion in
a deuterium plasma and are collimated onto a 3" liquid argon cell operating in
single-phase mode (zero electric field). Organic liquid scintillators are used
to tag scattered neutrons and to provide a time-of-flight measurement. The
setup is designed to study light pulse shapes and scintillation yields from
nuclear and electronic recoils as well as from {\alpha}-particles at working
points relevant to dark matter searches. Liquid argon offers the possibility to
scrutinise scintillation yields in noble liquids with respect to the
populations of the two fundamental excimer states. Here we present experimental
methods and first results from recent data towards such studies.Comment: 9 pages, 8 figures, proceedings of TAUP 2011, to be published in
Journal of Physics: Conference Series (JCPS
First test of a high voltage feedthrough for liquid Argon TPCs connected to a 300 kV power supply
Voltages above a hundred kilo-volt will be required to generate the drift
field of future very large liquid Argon Time Projection Chambers. The most
delicate component is the feedthrough whose role is to safely deliver the very
high voltage to the cathode through the thick insulating walls of the cryostat
without compromising the purity of the argon inside. This requires a
feedthrough that is typically meters long and carefully designed to be vacuum
tight and have small heat input. Furthermore, all materials should be carefully
chosen to allow operation in cryogenic conditions. In addition, electric fields
in liquid argon should be kept below a threshold to reduce risks of discharges.
The combination of all above requirements represents significant challenges
from the design and manufacturing perspective. In this paper, we report on the
successful operation of a feedthrough satisfying all the above requirements.
The details of the feedthrough design and its manufacturing steps are provided.
Very high voltages up to unprecedented voltages of -300 kV could be applied
during long periods repeatedly. A source of instability was observed, which was
specific to the setup configuration which was used for the test and not due to
the feedthrough itself.Comment: 13 pages, 9 figure
Extraction of electric field in heavily irradiated silicon pixel sensors
A new method for the extraction of the electric field in the bulk of heavily
irradiated silicon pixel sensors is presented. It is based on the measurement
of the Lorentz deflection and mobility of electrons as a function of depth. The
measurements were made at the CERN H2 beam line, with the beam at a shallow
angle with respect to the pixel sensor surface. The extracted electric field is
used to simulate the charge collection and the Lorentz deflection in the pixel
sensor. The simulated charge collection and the Lorentz deflection is in good
agreement with the measurements both for non-irradiated and irradiated up to
1E15 neq/cm2 sensors.Comment: 6 pages, 11 figures, presented at the 13th International Workshop on
Vertex Detectors for High Energy Physics, September 13-18, 2004,
Menaggio-Como, Italy. Submitted to Nucl. Instr. Meth.
Simulation of Heavily Irradiated Silicon Pixel Detectors
We show that doubly peaked electric fields are necessary to describe
grazing-angle charge collection measurements of irradiated silicon pixel
sensors. A model of irradiated silicon based upon two defect levels with
opposite charge states and the trapping of charge carriers can be tuned to
produce a good description of the measured charge collection profiles in the
fluence range from 0.5x10^{14} Neq/cm^2 to 5.9x10^{14} Neq/cm^2. The model
correctly predicts the variation in the profiles as the temperature is changed
from -10C to -25C. The measured charge collection profiles are inconsistent
with the linearly-varying electric fields predicted by the usual description
based upon a uniform effective doping density. This observation calls into
question the practice of using effective doping densities to characterize
irradiated silicon. The model is now being used to calibrate pixel hit
reconstruction algorithms for CMS.Comment: Invited talk at International Symposium on the Development of
Detectors for Particle, AstroParticle and Synchrtron Radiation Experiments,
Stanford Ca (SNIC06) 8 pages, LaTeX, 11 eps figure
Position Dependence of Charge Collection in Prototype Sensors for the CMS Pixel Detector
This paper reports on the sensor R&D activity for the CMS pixel detector.
Devices featuring several design and technology options have been irradiated up
to a proton fluencec of 1E15 n_eq/cm**2 at the CERN PS. Afterward they were
bump bonded to unirradiated readout chips and tested using high energy pions in
the H2 beam line of the CERN SPS. The readout chip allows a non zero suppressed
full analogue readout and therefore a good characterization of the sensors in
terms of noise and charge collection properties. The position dependence of
signal is presented and the differences between the two sensor options are
discussed.Comment: Contribution to the IEEE-NSS Oct. 2003, Portland, OR, USA, submitted
to IEEE-TNS 7 pages, 8 figures, 1 table. Revised, title change
- âŠ