104 research outputs found
Levothyroxine Monotherapy Cannot Guarantee Euthyroidism in All Athyreotic Patients
CONTEXT: Levothyroxine monotherapy is the treatment of choice for hypothyroid patients because peripheral T4 to T3 conversion is believed to account for the overall tissue requirement for thyroid hormones. However, there are indirect evidences that this may not be the case in all patients. OBJECTIVE: To evaluate in a large series of athyreotic patients whether levothyroxine monotherapy can normalize serum thyroid hormones and thyroid-pituitary feedback. DESIGN: Retrospective study. SETTING: Academic hospital. PATIENTS: 1,811 athyreotic patients with normal TSH levels under levothyroxine monotherapy and 3,875 euthyroid controls. MEASUREMENTS: TSH, FT4 and FT3 concentrations by immunoassays. RESULTS: FT4 levels were significantly higher and FT3 levels were significantly lower (p<0.001 in both cases) in levothyroxine-treated athyreotic patients than in matched euthyroid controls. Among the levothyroxine-treated patients 15.2% had lower serum FT3 and 7.2% had higher serum FT4 compared to euthyroid controls. A wide range of FT3/FT4 ratios indicated a major heterogeneity in the peripheral T3 production capacity in different individuals. The correlation between thyroid hormones and serum TSH levels indicated an abnormal feedback mechanism in levothyroxine-treated patients. CONCLUSIONS: Athyreotic patients have a highly heterogeneous T3 production capacity from orally administered levothyroxine. More than 20% of these patients, despite normal TSH levels, do not maintain FT3 or FT4 values in the reference range, reflecting the inadequacy of peripheral deiodination to compensate for the absent T3 secretion. The long-term effects of chronic tissue exposure to abnormal T3/T4 ratio are unknown but a sensitive marker of target organ response to thyroid hormones (serum TSH) suggests that this condition causes an abnormal pituitary response. A more physiological treatment than levothyroxine monotherapy may be required in some hypothyroid patients
Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production
Background - Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results - Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions - Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction
A survey of CH4 conversion reactors. Final task report (Jun 93 - Feb 94)
A literature survey of methane reforming, parial oxidation, and oxidative coupling reactors and processes has been conducted. Packed bed reactors, membrane reactors, and other novel processes were compared in terms of absolute and specific activity
Mixing Optimization With Inward Flow Configuration Contra-Rotating Impeller, Baffle-Free Tank
In this study, pitched-blade, contra-rotating impeller, baffle-free tank with opposing inward flow is optimized using various designs of mixers derived from the Taguchi method. Mixing efficiency and torque are used to find the optimal design for the different specific gravities of solid particles employing in both experiments and CFD simulations. The analysis of signal-to-noise ratio shows that the impeller clearance and diameter are significant factors on the fluid flow and thus the mixing efficiency. In this study, 27 cases were studied to determine and report the optimal design parameters. A combination of CFD simulation with a strong design of experiment illustrates the ability to characterize and optimize the design parameters that affect mixing efficiency, showing promise as design guideline for the contra-rotating impeller. The best compromise between high mixing efficiency and low torque for pilot scale was found in the following configuration: a 300 mm diameter tank with liquid filled to a height of 300 mm; four pitched-blades rotating at 100 RPM with an impeller diameter of 150 mm; and a 125 mm impeller-impeller and impeller-bottom clearance
Recommended from our members
Hydraulic performance of a 5-cm CINC contactor for caustic-side solvent extraction.
The hydraulic performance of a 5-cm centrifugal contactor from Costner Industries Nevada Corporation (CINC) was measured for both one- and two-phase flow. Flow conditions and test liquids as well as the liquid height in the annular mixing zone and the occurrence of discontinuous (slug) flow in the interstage lines are reported. Results are compared with earlier results obtained using 2- and 4-cm contactors made at Argonne National Laboratory. In each case, one-phase flow tests can be used to predict behavior in two-phase flow. This makes the one-phase flow test a quality control tool for evaluating contactor rotors as they are manufactured. These results indicate that the 5-cm contactor works in the same way as the 2- and 4-cm contactors
- …