391 research outputs found
The potential energy of a K Fermi gas in the BCS-BEC crossover
We present a measurement of the potential energy of an ultracold trapped gas
of K atoms in the BCS-BEC crossover and investigate the temperature
dependence of this energy at a wide Feshbach resonance, where the gas is in the
unitarity limit. In particular, we study the ratio of the potential energy in
the region of the unitarity limit to that of a non-interacting gas, and in the
T=0 limit we extract the universal many-body parameter . We find ; this value is consistent with previous measurements
using Li atoms and also with recent theory and Monte Carlo calculations.
This result demonstrates the universality of ultracold Fermi gases in the
strongly interacting regime
Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator
Recent theoretical work has shown that radiation pressure effects can in
principle cool a mechanical degree of freedom to its ground state. In this
paper, we apply this theory to our realization of an opto-mechanical system in
which the motion of mechanical oscillator modulates the resonance frequency of
a superconducting microwave circuit. We present experimental data demonstrating
the large mechanical quality factors possible with metallic, nanomechanical
beams at 20 mK. Further measurements also show damping and cooling effects on
the mechanical oscillator due to the microwave radiation field. These data
motivate the prospects for employing this dynamical backaction technique to
cool a mechanical mode entirely to its quantum ground state.Comment: 6 pages, 6 figure
Tuning p-wave interactions in an ultracold Fermi gas of atoms
We have measured a p-wave Feshbach resonance in a single-component, ultracold
Fermi gas of potassium atoms. We have used this resonance to enhance the
normally suppressed p-wave collision cross-section to values larger than the
background s-wave cross-section between potassium atoms in different
spin-states. In addition to the modification of two-body elastic processes, the
resonance dramatically enhances three-body inelastic collisional loss.Comment: 4 pages, 5 figure
From Cavity Electromechanics to Cavity Optomechanics
We present an overview of experimental work to embed high-Q mesoscopic
mechanical oscillators in microwave and optical cavities. Based upon recent
progress, the prospect for a broad field of "cavity quantum mechanics" is very
real. These systems introduce mesoscopic mechanical oscillators as a new
quantum resource and also inherently couple their motion to photons throughout
the electromagnetic spectrum.Comment: 8 pages, 6 figures, ICAP proceedings submissio
Probing Pair-Correlated Fermionic Atoms through Correlations in Atom Shot Noise
Pair-correlated fermionic atoms are created through dissociation of weakly
bound molecules near a magnetic-field Feshbach resonance. We show that
correlations between atoms in different spin states can be detected using the
atom shot noise in absorption images. Furthermore, using time-of-Flight imaging
we have observed atom pair correlations in momentum space
Cavity optomechanics with Si3N4 membranes at cryogenic temperatures
We describe a cryogenic cavity-optomechanical system that combines Si3N4
membranes with a mechanically-rigid Fabry-Perot cavity. The extremely high
quality-factor frequency products of the membranes allow us to cool a MHz
mechanical mode to a phonon occupation of less than 10, starting at a bath
temperature of 5 kelvin. We show that even at cold temperatures
thermally-occupied mechanical modes of the cavity elements can be a limitation,
and we discuss methods to reduce these effects sufficiently to achieve ground
state cooling. This promising new platform should have versatile uses for
hybrid devices and searches for radiation pressure shot noise.Comment: 19 pages, 5 figures, submitted to New Journal of Physic
Cavity optomechanics with stoichiometric SiN films
We study high-stress SiN films for reaching the quantum regime with
mesoscopic oscillators connected to a room-temperature thermal bath, for which
there are stringent requirements on the oscillators' quality factors and
frequencies. Our SiN films support mechanical modes with unprecedented products
of mechanical quality factor and frequency reaching Hz. The SiN membranes exhibit a low optical absorption
characterized by Im at 935 nm, representing a 15 times
reduction for SiN membranes. We have developed an apparatus to simultaneously
cool the motion of multiple mechanical modes based on a short, high-finesse
Fabry-Perot cavity and present initial cooling results along with future
possibilities.Comment: 4 pages, 5 figure
- …