112 research outputs found
Animal experimental research on microstructural behavior on the hyaline arthroidal cartilage after immobilization and remobilization
The degeneration of the articular cartilage after a period of immobilization was investigated. The experiment was carried out by the immobilization of the knee joints of rabbits. Even after remobilization there was an increase in the alterations. These changes did not prove to be reversible
Effects of NO synthase inhibitors on the synovial microcirculation in the mouse knee joint
Production of nitric oxide by the inducible NO synthase (iNOS) is known to be enhanced in chronic joint inflammation and osteoarthritis as well as aseptic loosening of joint prostheses. Initial studies yielded promising results after inhibition of the nitric oxide synthase (NOS). However, the effect of NOS inhibition has not been studied at the site of the primary function of NO, the microcirculation of the synovium in vivo. Using our recently developed model for the in vivo study of synovial microcirculation in the mouse knee joint, the effects of selective versus nonselective inhibition of iNOS were investigated by means of intravital fluorescence microscopy. After resection of the patella tendon, the synovial fatty tissue was exposed for intravital microscopy. Diameter of arterioles, functional capillary density (FCD), diameter of venules, venular red blood cell velocity and leukocyte-endothelial cell interaction were quantitatively analyzed before, and 10 and 60 min after intravenous injection of NOS inhibitors {[}selective iNOS inhibitor N-iminoethyl-L-lysine (L-NIL), and nonselective NOS inhibitor N-G-nitro-L-arginine methyl ester (L-NAME)]. Our results demonstrate that L-NAME causes a significant decrease in the arteriolar diameter and FCD associated with an increase in the leukocyte accumulation in the synovium in vivo. In contrast, L-NIL neither altered the microhemodynamics nor the leukocyte-endothelial cell interaction in the synovium, indicating its potential use for selective inhibition of iNOS in joint inflammation. Using our method, further studies will provide new insights into the unknown effect of NOS inhibition on the synovial microvasculature in inflammatory joint disease in vivo. Copyright (C) 1999 S. Karger AG, Basel
Quantitative assessment of angiogenesis in murine antigen-induced arthritis by intravital fluorescence microscopy
Inhibition of angiogenesis might be a therapeutic approach to prevent joint destruction caused by the overgrowing synovial tissue during chronic joint inflammation. The aim of this study was to investigate angiogenesis in the knee joint of mice with antigen-induced arthritis (AIA) by means of intravital microscopy. In 14 mice (C57BL6/129Sv) intravital microscopic assessment was performed on day 8 after AIA induction in two groups (controls, AIA). Synovial tissue was investigated by intravital fluorescence microscopy using FITC-dextran (150 kD). Quantitative assessment of vessel density was performed according to the following categories: functional capillary density (FCD, vessels 10 mum) and FVD of vessels with angiogenic criteria (convoluted vessels, abrupt changes of diameter, vessels which are generated by sprouting and progressively pruned and remodelled). Microvessel count was performed using immunohistochemistry. There was no significant difference in FCD between the control group (337 +/- 9 cm/cm(2); mean +/-SEM) and the AIA group (359 +/- 13 cm/cm(2)). The density of vessels larger than 10 gm diameter was significantly increased in animals with AIA (135 +/- 10 vs. 61 +/- 5 cm/cm(2) in control). The density of blood vessels with angiogenic criteria was enhanced in arthritic animals (79 +/- 17 vs. 12 +/- 2 cm/cm(2) in control). There was a significant increase in the microvessel count in arthritic animals (297 +/- 25 vs. 133 +/- 16 mm(-2) in control). These findings demonstrate that angiogenesis in murine AIA can be assessed quantitatively using intravital microscopy. Further studies will address antiangiogenic strategies in AIA
Differential thermography for experimental, full-field stress analysis of hip arthroplasty
A hip prosthesis implant produces a significant deviation in the stress pattern compared with the physiologic condition. In this work, the stress patterns are evaluated experimentally on synthetic femora, by means of thermoelastic stress analysis. Two factors have been considered: stem implantation and head offset. Stress maps were obtained using differential thermography and correlated to these factors. Thermoelastic stress maps have demonstrated to be sensitive to the implant and the head offset. In detail, the standard deviation of stresses can reduce from -5% to -50% (with reference to the physiologic one), depending on stem design; peak stresses change their position or disappear for different implant position or press-fitting, the sensitivity of average stresses to the offset is at least equal to 0.07MPa/mm. On the whole, a methodology was developed, allowing the experimental evaluation and comparison of the stress distributions produced by different implant
- …