1,047 research outputs found
Spectral Properties of Oriented Hypergraphs
An oriented hypergraph is a hypergraph where each vertex-edge incidence is
given a label of or . The adjacency and Laplacian eigenvalues of an
oriented hypergraph are studied. Eigenvalue bounds for both the adjacency and
Laplacian matrices of an oriented hypergraph which depend on structural
parameters of the oriented hypergraph are found. An oriented hypergraph and its
incidence dual are shown to have the same nonzero Laplacian eigenvalues. A
family of oriented hypergraphs with uniformally labeled incidences is also
studied. This family provides a hypergraphic generalization of the signless
Laplacian of a graph and also suggests a natural way to define the adjacency
and Laplacian matrices of a hypergraph. Some results presented generalize both
graph and signed graph results to a hypergraphic setting.Comment: For the published version of the article see
http://repository.uwyo.edu/ela/vol27/iss1/24
Targeting lentiviral vectors to antigen-specific immunoglobulins
Gene transfer into B cells by lentivectors can provide an alternative approach to managing B lymphocyte malignancies and autoreactive B cell-mediated autoimmune diseases. These pathogenic B cell Populations can be distinguished by their surface expression of monospecific immunoglobulin. Development of a novel vector system to deliver genes to these specific B cells could improve the safety and efficacy of gene therapy. We have developed an efficient rnethod to target lentivectors to monospecific immunoglobulin-expressing cells in vitro and hi vivo. We were able to incorporate a model antigen CD20 and a fusogenic protein derived from the Sindbis virus as two distinct molecules into the lentiviral Surface. This engineered vector could specifically bind to cells expressing Surface immunoglobulin recognizing CD20 (αCD20), resulting in efficient transduction of target cells in a cognate antigen-dependent manner in vitro, and in vivo in a xenografted tumor model. Tumor suppression was observed in vivo, using the engineered lentivector to deliver a suicide gene to a xenografted tumor expressing αCD20. These results show the feasibility of engineering lentivectors to target immunoglobulin-specific cells to deliver a therapeutic effect. Such targeting lentivectors also Could potentially be used to genetically mark antigen-specific B cells in vivo to study their B cell biology
A Self-Advocate’s Perspective on the COVID-19 Pandemic
This article summarizes the experience of a self-advocate from Idaho during the COVID pandemic. This article addresses issues of social isolation, mental health, and social supports
- …
