14 research outputs found

    Impact of the Prolymphangiogenic Crosstalk in the Tumor Microenvironment on Lymphatic Cancer Metastasis

    Get PDF
    Lymphangiogenesis is a very early step in lymphatic metastasis. It is regulated and promoted not only by the tumor cells themselves, but also by cells of the tumor microenvironment, including cancer associated fibroblasts, mesenchymal stem cells, dendritic cells, or macrophages. Even the extracellular matrix as well as cytokines and growth factors are involved in the process of lymphangiogenesis and metastasis. The cellular and noncellular components influence each other and can be influenced by the tumor cells. The knowledge about mechanisms behind lymphangiogenesis in the tumor microenvironmental crosstalk is growing and offers starting points for new therapeutic approaches

    Short-Term Ultraviolet A Irradiation Leads to Dysfunction of the Limbal Niche Cells and an Antilymphangiogenic and Anti-inflammatory Micromilieu

    No full text
    PURPOSE. We analyzed the effects of short-term ultraviolet A (UVA) irradiation on the putative limbal stem cell phenotype, limbal fibroblasts, corneal inflammation, and corneal (lymph) angiogenic privilege. METHODS. Primary human limbal epithelial cells and fibroblasts were irradiated with 5.2 J/cm(2) of UVA. The limbal epithelial cell phenotype was assessed using P63a, cytokeratin 15, integrin b1 (marking stem and transient amplifying cells), and cytokeratin 3 (a differentiation marker) as well as by a colony-forming efficiency (CFE) assay. An epithelial-fibroblast coculture model was used to compare the ability of irradiated and nonirradiated fibroblasts to support the putative limbal stem cell phenotype. The effects of the conditioned media of irradiated and nonirradiated cells on proliferation and tube formation of human lymphatic and blood endothelial cells also were tested. The levels of factors related to angiogenesis and inflammation were assessed in a protein array and using ELISA. RESULTS. Ultraviolet A induced phenotypical changes of limbal epithelial cells, as their CFE and putative stem cell/transient amplifying marker expression decreased. Limbal epithelial cells cocultured with UVA-irradiated limbal fibroblasts also exhibited differentiation and CFE decrease. Conditioned media from irradiated limbal epithelial cells and fibroblasts inhibited lymphatic endothelial cell proliferation and tube network complexity. Levels of monocyte chemoattractant protein 1 (MCP1) were reduced following UVA irradiation of both cell populations, while levels of IFN-gamma increased in irradiated limbal epithelial cells. CONCLUSIONS. These data imply a key role of cellular components of the limbal niche following short-term UVA irradiation. Overall, UVA irradiation leads to dysfunction of these cells and a anti(lymph) angiogenic and anti-inflammatory micromilieu

    Autocrine Impact of VEGF-A on Uveal Melanoma Cells

    No full text
    PURPOSE. Tumor-derived VEGF-A, apart from expediting sufficient vascularization, subsequent tumor growth, and metastatic spread, can act on malignant cells themselves provided that VEGF receptors 1 or 2 (VEGF-R1, -R2) are co-expressed. The study goal was to investigate whether such autocrine VEGF-A signaling exists in uveal melanoma (UM). METHODS. Primary (MEL-270, OM-431) and metastatic (OMM-2.3, OMM-2.5) UM cell lines were analyzed for VEGF-A, VEGF-R1, and VEGF-R2 expression by RT-PCR, ELISA (VEGF-A protein), and immunocytochemistry (VEGF receptors). Proliferation of UM cells incubated with neutralizing anti-VEGF-A antibody bevacizumab (<2.5 mg/ mL), or VEGF-A (<100 ng/ mL) was assessed by bromodeoxyuridine (BrdU) ELISA. It was measured by real-time PCR, whether VEGF-A (100 ng/ mL) modulated the expression ratio of VEGF-A itself and its antiangiogenic antagonist pigment epithelium-derived factor (PEDF). RESULTS. All UM cells expressed VEGF-A, VEGF-R1, VEGF-R2 mRNA, and protein. In each cell line, the proliferation was stimulated by VEGF-A or inhibited by blocking VEGF-A, or both: bevacizumab significantly decreased the proliferation in MEL-270 (P 0.005), OMM-2.3 (P = 0.001), and OMM-2.5 (P = 0.011). Increased VEGF-A signaling significantly raised the proliferation in MEL-270, OM-431 (P < 0.001, respectively), and OMM-2.3 (P = 0.043) in a dose-dependent manner but did not significantly change the VEGF-A/PEDF mRNA expression ratio. CONCLUSIONS. Autocrine VEGF-A signaling seems to be present in UM, sustaining the proliferation of both primary and metastatic UM cells. Apparently, VEGF-A signaling in UM cells neither acts retroactively on VEGF-A expression, in the sense of a feedback loop, nor contributes to a pro-angiogenic shift of the VEGF-A/ PEDF ratio
    corecore