173 research outputs found

    Increased seed consumption by biological control weevil tempers positive CO\u3csub\u3e2\u3c/sub\u3e effect on invasive plant (\u3ci\u3eCentaurea diffusa\u3c/i\u3e) fitness

    Get PDF
    Predicted increases in atmospheric CO2 and temperature may benefit some invasive plants, increasing the need for effective invasive plant management. Biological control can be an effective means of managing invasive plants, but the anticipated range in responses of plant–insect interactions to climate change make it difficult to predict how effective biological control will be in the future. Field experiments that manipulate climate within biological control systems could improve predictive power, but are challenging to implement and therefore rare to date. Here, we show that free air CO2 enrichment in the field increased the fitness of Centaurea diffusa Lam., a problematic invader in much of the western United States. However, CO2 enrichment also increased the impact of the biological control agent Larinus minutus (Coleoptera: Curculionidae) on C. diffusa fitness. C. diffusa plants flowered earlier and seed heads developed faster with both elevated CO2 and increased temperature. Natural dispersal of L. minutus into the experimental plots provided a unique opportunity to examine weevil preference for and effects on C. diffusa grown under the different climate change treatments. Elevated CO2 increased both the proportion of seed heads infested by L. minutus and, correspondingly, the amount of seed removed by weevils. Warming had no detectable effect on weevil utilization of plants. Higher weevil densities on elevated CO2 plants reduced, but did not eliminate, the positive effects of CO2 on C. diffusa fitness. Correlations between plant development time and weevil infestation suggest that climate change increased weevil infestation by hastening plant phenology. Phenological mismatches are anticipated with climate change in many plant–insect systems, but in the case of L. minutus and C. diffusa in mixed-grass prairie, a better phenological match may make the biological control agent more effective as CO2 levels rise

    Visualizing Scholarship as Social Change

    Get PDF
    This visualization and accompanying short essay articulates both a broad definition of what constitutes “scholarship as social change,” any knowledge production that has a goal of exploring, articulating, and intervening in inequities and injustices, past and present, as well as projects that helped inspire the contributions of to the Curated Futures project (Gamifying Digital Collections, Remaking Space and Place, FLAME, and The Third Library and the Commons). It also invites readers to submit their own examples of projects that they think embody “scholarship as social change”

    Ethico-Aesthetic Repairs

    Get PDF
    Repairs, like many of the people who carry them out, often constitute an invisible background that ensures the smooth functioning of everyday life-worlds. This extended introduction instead places them centre stage, situating the theory and practice of repair at the intersection of a number of different fields, from Science and Technology Studies to the Medical Humanities. It explores the role repair plays in the layered history of various objects and social forms, from technological devices and artworks, to post-conflict cultures. Repair, it argues, is a practice that exists in relational webs of entanglement, where its power can be multiplied if supplemented with an ethics of care. Like the examples of repair it brings to light, the introduction seeks to hold heterogeneous fragments in relation, positing repair as a ‘material metaphor’ that is invaluable for posing questions in a range of disciplinary arenas

    Increased seed consumption by biological control weevil tempers positive CO\u3csub\u3e2\u3c/sub\u3e effect on invasive plant (\u3ci\u3eCentaurea diffusa\u3c/i\u3e) fitness

    Get PDF
    Predicted increases in atmospheric CO2 and temperature may benefit some invasive plants, increasing the need for effective invasive plant management. Biological control can be an effective means of managing invasive plants, but the anticipated range in responses of plant–insect interactions to climate change make it difficult to predict how effective biological control will be in the future. Field experiments that manipulate climate within biological control systems could improve predictive power, but are challenging to implement and therefore rare to date. Here, we show that free air CO2 enrichment in the field increased the fitness of Centaurea diffusa Lam., a problematic invader in much of the western United States. However, CO2 enrichment also increased the impact of the biological control agent Larinus minutus (Coleoptera: Curculionidae) on C. diffusa fitness. C. diffusa plants flowered earlier and seed heads developed faster with both elevated CO2 and increased temperature. Natural dispersal of L. minutus into the experimental plots provided a unique opportunity to examine weevil preference for and effects on C. diffusa grown under the different climate change treatments. Elevated CO2 increased both the proportion of seed heads infested by L. minutus and, correspondingly, the amount of seed removed by weevils. Warming had no detectable effect on weevil utilization of plants. Higher weevil densities on elevated CO2 plants reduced, but did not eliminate, the positive effects of CO2 on C. diffusa fitness. Correlations between plant development time and weevil infestation suggest that climate change increased weevil infestation by hastening plant phenology. Phenological mismatches are anticipated with climate change in many plant–insect systems, but in the case of L. minutus and C. diffusa in mixed-grass prairie, a better phenological match may make the biological control agent more effective as CO2 levels rise

    Animal Counting Toolkit : a practical guide to small-boat surveys for estimating abundance of coastal marine mammals

    Get PDF
    The authors thank Synchronicity Earth, Marisla Foundation, and the US Marine Mammal Commission for seed funding for this program.Small cetaceans (dolphins and porpoises) face serious anthropogenic threats in coastal habitats. These include bycatch in fisheries; exposure to noise, plastic and chemical pollution; disturbance from boaters; and climate change. Generating reliable abundance estimates is essential to assess sustainability of bycatch in fishing gear or any other form of anthropogenic removals and to design conservation and recovery plans for endangered species. Cetacean abundance estimates are lacking from many coastal waters of many developing countries. Lack of funding and training opportunities makes it difficult to fill in data gaps. Even if international funding were found for surveys in developing countries, building local capacity would be necessary to sustain efforts over time to detect trends and monitor biodiversity loss. Large-scale, shipboard surveys can cost tens of thousands of US dollars each day. We focus on methods to generate preliminary abundance estimates from low-cost, small-boat surveys that embrace a ‘training-while-doing’ approach to fill in data gaps while simultaneously building regional capacity for data collection. Our toolkit offers practical guidance on simple design and field data collection protocols that work with small boats and small budgets, but expect analysis to involve collaboration with a quantitative ecologist or statistician. Our audience includes independent scientists, government conservation agencies, NGOs and indigenous coastal communities, with a primary focus on fisheries bycatch. We apply our Animal Counting Toolkit to a small-boat survey in Canada’s Pacific coastal waters to illustrate the key steps in collecting line transect survey data used to estimate and monitor marine mammal abundance.Publisher PDFPeer reviewe

    Formal total syntheses of classic natural product target molecules via palladium-catalyzed enantioselective alkylation

    Get PDF
    Pd-catalyzed enantioselective alkylation in conjunction with further synthetic elaboration enables the formal total syntheses of a number of “classic” natural product target molecules. This publication highlights recent methods for setting quaternary and tetrasubstituted tertiary carbon stereocenters to address the synthetic hurdles encountered over many decades across multiple compound classes spanning carbohydrate derivatives, terpenes, and alkaloids. These enantioselective methods will impact both academic and industrial settings, where the synthesis of stereogenic quaternary carbons is a continuing challenge

    Multivariate analysis of FcR-mediated NK cell functions identifies unique clustering among humans and rhesus macaques

    Get PDF
    Rhesus macaques (RMs) are a common pre-clinical model used to test HIV vaccine efficacy and passive immunization strategies. Yet, it remains unclear to what extent the Fc-Fc receptor (FcR) interactions impacting antiviral activities of antibodies in RMs recapitulate those in humans. Here, we evaluated the FcR-related functionality of natural killer cells (NKs) from peripheral blood of uninfected humans and RMs to identify intra- and inter-species variation. NKs were screened for FcγRIIIa (human) and FcγRIII (RM) genotypes (FcγRIII(a)), receptor signaling, and antibody-dependent cellular cytotoxicity (ADCC), the latter mediated by a cocktail of monoclonal IgG1 antibodies with human or RM Fc. FcγRIII(a) genetic polymorphisms alone did not explain differences in NK effector functionality in either species cohort. Using the same parameters, hierarchical clustering separated each species into two clusters. Importantly, in principal components analyses, ADCC magnitude, NK contribution to ADCC, FcγRIII(a) cell-surface expression, and frequency of phosphorylated CD3ζ NK cells all contributed similarly to the first principal component within each species, demonstrating the importance of measuring multiple facets of NK cell function. Although ADCC potency was similar between species, we detected significant differences in frequencies of NK cells and pCD3ζ+ cells, level of cell-surface FcγRIII(a) expression, and NK-mediated ADCC (P<0.001), indicating that a combination of Fc-FcR parameters contribute to overall inter-species functional differences. These data strongly support the importance of multi-parameter analyses of Fc-FcR NK-mediated functions when evaluating efficacy of passive and active immunizations in pre- and clinical trials and identifying correlates of protection. The results also suggest that pre-screening animals for multiple FcR-mediated NK function would ensure even distribution of animals among treatment groups in future preclinical trials
    corecore