3 research outputs found

    Efficacy of Lanthanum Carbonate and Sevelamer Carbonate as Phosphate Binders in Chronic Kidney Disease—A Comparative Clinical Study

    No full text
    (1) Background: Hyperphosphatemia is correlated with an increased rate of mortality and morbidity due to cardiovascular diseases in chronic kidney disease (CKD) patients. It can be improved by restricting dietary intake of phosphate and oral phosphate binders, such as lanthanum carbonate and sevelamer carbonate. (2) Objective: To evaluate the clinical efficacy of sevelamer carbonate in comparison to lanthanum carbonate as phosphate binders for the treatment of hyperphosphatemia in CKD patients. (3) Methods: A randomized control comparative clinical study was conducted for one year on 150 CKD patients associated with hyperphosphatemia, divided into two groups, i.e., Group 1 (n = 75) treated with sevelamer carbonate 800 mg thrice daily and Group 2 (n = 75) treated with lanthanum carbonate 500 mg thrice daily. The patients were assessed at the time of enrollment in the study, after three months and after six months from baseline for different parameters, i.e., complete blood count, liver function tests, renal function tests, electrolytes, and serum phosphate level. (4) Results: 150 CKD patients aged 51–60 participated in the study. The mean age of patients was 54 ± 4.6 years, and males (55.71%) were more common than females (44.29%). Hypertension was the common comorbidity in both groups with chronic kidney disease. After six months of treatment, the mean serum phosphate level was significantly decreased from 8.31 ± 0.09 mg/dL to 5.11 ± 0.18 (38%) in Group 1 and from 8.79 ± 0.28 mg/dl to 4.02 ± 0.12 (54%; p < 0.05) in Group 2, respectively. In both groups, no significant difference was found in other parameters such as parathyroid hormone, calcium, uric acid, LFT, RFT, CBC, etc. (5) Conclusion: Lanthanum carbonate is more efficacious in lowering serum phosphate concentrations and effectively managing hyperphosphatemia as compared to sevelamer carbonate

    Efficacy of Lanthanum Carbonate and Sevelamer Carbonate as Phosphate Binders in Chronic Kidney Disease—A Comparative Clinical Study

    No full text
    (1) Background: Hyperphosphatemia is correlated with an increased rate of mortality and morbidity due to cardiovascular diseases in chronic kidney disease (CKD) patients. It can be improved by restricting dietary intake of phosphate and oral phosphate binders, such as lanthanum carbonate and sevelamer carbonate. (2) Objective: To evaluate the clinical efficacy of sevelamer carbonate in comparison to lanthanum carbonate as phosphate binders for the treatment of hyperphosphatemia in CKD patients. (3) Methods: A randomized control comparative clinical study was conducted for one year on 150 CKD patients associated with hyperphosphatemia, divided into two groups, i.e., Group 1 (n = 75) treated with sevelamer carbonate 800 mg thrice daily and Group 2 (n = 75) treated with lanthanum carbonate 500 mg thrice daily. The patients were assessed at the time of enrollment in the study, after three months and after six months from baseline for different parameters, i.e., complete blood count, liver function tests, renal function tests, electrolytes, and serum phosphate level. (4) Results: 150 CKD patients aged 51–60 participated in the study. The mean age of patients was 54 ± 4.6 years, and males (55.71%) were more common than females (44.29%). Hypertension was the common comorbidity in both groups with chronic kidney disease. After six months of treatment, the mean serum phosphate level was significantly decreased from 8.31 ± 0.09 mg/dL to 5.11 ± 0.18 (38%) in Group 1 and from 8.79 ± 0.28 mg/dl to 4.02 ± 0.12 (54%; p < 0.05) in Group 2, respectively. In both groups, no significant difference was found in other parameters such as parathyroid hormone, calcium, uric acid, LFT, RFT, CBC, etc. (5) Conclusion: Lanthanum carbonate is more efficacious in lowering serum phosphate concentrations and effectively managing hyperphosphatemia as compared to sevelamer carbonate

    Virtual Versus Light Microscopy Usage among Students: A Systematic Review and Meta-Analytic Evidence in Medical Education

    No full text
    Background: The usage of whole-slide images has recently been gaining a foothold in medical education, training, and diagnosis. Objectives: The first objective of the current study was to compare academic performance on virtual microscopy (VM) and light microscopy (LM) for learning pathology, anatomy, and histology in medical and dental students during the COVID-19 period. The second objective was to gather insight into various applications and usage of such technology for medical education. Materials and methods: Using the keywords “virtual microscopy” or “light microscopy” or “digital microscopy” and “medical” and “dental” students, databases (PubMed, Embase, Scopus, Cochrane, CINAHL, and Google Scholar) were searched. Hand searching and snowballing were also employed for article searching. After extracting the relevant data based on inclusion and execution criteria, the qualitative data were used for the systematic review and quantitative data were used for meta-analysis. The Newcastle Ottawa Scale (NOS) scale was used to assess the quality of the included studies. Additionally, we registered our systematic review protocol in the prospective register of systematic reviews (PROSPERO) with registration number CRD42020205583. Results: A total of 39 studies met the criteria to be included in the systematic review. Overall, results indicated a preference for this technology and better academic scores. Qualitative analyses reported improved academic scores, ease of use, and enhanced collaboration amongst students as the top advantages, whereas technical issues were a disadvantage. The performance comparison of virtual versus light microscopy meta-analysis included 19 studies. Most (10/39) studies were from medical universities in the USA. VM was mainly used for teaching pathology courses (25/39) at medical schools (30/39). Dental schools (10/39) have also reported using VM for teaching microscopy. The COVID-19 pandemic was responsible for the transition to VM use in 17/39 studies. The pooled effect size of 19 studies significantly demonstrated higher exam performance (SMD: 1.36 [95% CI: 0.75, 1.96], p p p p = 0.06), the result was insignificant. The overall analysis of 15 studies assessing exam performance showed significantly higher performance for both medical (SMD: 1.42 [95% CI: 0.59, 2.25], p p < 0.001). Conclusions: The results of qualitative and quantitative analyses show that VM technology and digitization of glass slides enhance the teaching and learning of microscopic aspects of disease. Additionally, the COVID-19 global health crisis has produced many challenges to overcome from a macroscopic to microscopic scale, for which modern virtual technology is the solution. Therefore, medical educators worldwide should incorporate newer teaching technologies in the curriculum for the success of the coming generation of health-care professionals
    corecore