177 research outputs found
Constraining the dark energy dynamics with the cosmic microwave background bispectrum
We consider the influence of the dark energy dynamics at the onset of cosmic
acceleration on the Cosmic Microwave Background (CMB) bispectrum, through the
weak lensing effect induced by structure formation. We study the line of sight
behavior of the contribution to the bispectrum signal at a given angular
multipole : we show that it is non-zero in a narrow interval centered at a
redshift satisfying the relation , where the
wavenumber corresponds to the scale entering the non-linear phase, and is
the cosmological comoving distance. The relevant redshift interval is in the
range 0.1\lsim z\lsim 2 for multipoles 1000\gsim\ell\gsim 100; the signal
amplitude, reflecting the perturbation dynamics, is a function of the
cosmological expansion rate at those epochs, probing the dark energy equation
of state redshift dependence independently on its present value. We provide a
worked example by considering tracking inverse power law and SUGRA Quintessence
scenarios, having sensibly different redshift dynamics and respecting all the
present observational constraints. For scenarios having the same present
equation of state, we find that the effect described above induces a projection
feature which makes the bispectra shifted by several tens of multipoles, about
10 times more than the corresponding effect on the ordinary CMB angular power
spectrum.Comment: 15 pages, 7 figures, matching version accepted by Physical Review D,
one figure improve
Active Galaxies in the UV
In this article we present different aspects of AGN studies demonstrating the
importance of the UV spectral range. Most important diagnostic lines for
studying the general physical conditions as well as the metalicities in the
central broad line region in AGN are emitted in the UV. The UV/FUV continuum in
AGN excites not only the emission lines in the immediate surrounding but it is
responsible for the ionization of the intergalactic medium in the early stages
of the universe. Variability studies of the emission line profiles of AGN in
the UV give us information on the structure and kinematics of the immediate
surrounding of the central supermassive black hole as well as on its mass
itself.Comment: 29 pages, 13 figures, Ap&SS in pres
Jet disc coupling in black hole binaries
In the last decade multi-wavelength observations have demonstrated the
importance of jets in the energy output of accreting black hole binaries. The
observed correlations between the presence of a jet and the state of the
accretion flow provide important information on the coupling between accretion
and ejection processes. After a brief review of the properties of black hole
binaries, I illustrate the connection between accretion and ejection through
two particularly interesting examples. First, an INTEGRAL observation of Cygnus
X-1 during a 'mini-' state transition reveals disc jet coupling on time scales
of orders of hours. Second, the black hole XTEJ1118+480 shows complex
correlations between the X-ray and optical emission. Those correlations are
interpreted in terms of coupling between disc and jet on time scales of seconds
or less. Those observations are discussed in the framework of current models.Comment: Invited talk at the Fifth Stromlo Symposium: Disks, Winds & Jets -
from Planets to Quasars. Accepted for publication in Astrophysics & Space
Scienc
Comparative empirical evaluations of internal migration models in subnational population projections
While population forecasters place considerable emphasis on the selection of appropriate migration assumptions, surprisingly little attention has been given to the effects on projection outcomes of the way internal migration is handled within population projection models. This paper compares population projections for Australia's states and territories prepared using ten different internal migration models but with identical assumptions for fertility, mortality and international migration and with the internal migration model parameters held constant. It is shown that the choice of migration model generates large differences in total population, geographical distribution and age--sex composition. It is argued that model choice should be guided by balancing model reality with practical utility and model performance is examined against these criteria. Of the ten models evaluated the authors argue that the migration pool, biregional, and biregional with net constraints models offer a good compromise between conceptual rigour and practicality. If the projected origin-destination flows are required then one of the versions of the standard multiregional model with reduced data inputs is preferred. The large variation in projection outputs points to the need for a better understanding of the spatio-temporal structure of migration in Australia
Dimensionless cosmology
Although it is well known that any consideration of the variations of
fundamental constants should be restricted to their dimensionless combinations,
the literature on variations of the gravitational constant is entirely
dimensionful. To illustrate applications of this to cosmology, we explicitly
give a dimensionless version of the parameters of the standard cosmological
model, and describe the physics of Big Bang Neucleosynthesis and recombination
in a dimensionless manner. The issue that appears to have been missed in many
studies is that in cosmology the strength of gravity is bound up in the
cosmological equations, and the epoch at which we live is a crucial part of the
model. We argue that it is useful to consider the hypothetical situation of
communicating with another civilization (with entirely different units),
comparing only dimensionless constants, in order to decide if we live in a
Universe governed by precisely the same physical laws. In this thought
experiment, we would also have to compare epochs, which can be defined by
giving the value of any {\it one} of the evolving cosmological parameters. By
setting things up carefully in this way one can avoid inconsistent results when
considering variable constants, caused by effectively fixing more than one
parameter today. We show examples of this effect by considering microwave
background anisotropies, being careful to maintain dimensionlessness
throughout. We present Fisher matrix calculations to estimate how well the fine
structure constants for electromagnetism and gravity can be determined with
future microwave background experiments. We highlight how one can be misled by
simply adding to the usual cosmological parameter set
Compositional analysis of the associations between 24-h movement behaviours and cardio-metabolic risk factors in overweight and obese adults with pre-diabetes from the PREVIEW study: cross-sectional baseline analysis
Background: Physical activity, sedentary time and sleep have been shown to be associated with cardio-metabolic
health. However, these associations are typically studied in isolation or without accounting for the effect of all
movement behaviours and the constrained nature of data that comprise a finite whole such as a 24 h day. The aim
of this study was to examine the associations between the composition of daily movement behaviours (including
sleep, sedentary time (ST), light intensity physical activity (LIPA) and moderate-to-vigorous activity (MVPA)) and
cardio-metabolic health, in a cross-sectional analysis of adults with pre-diabetes. Further, we quantified the
predicted differences following reallocation of time between behaviours.
Methods: Accelerometers were used to quantify daily movement behaviours in 1462 adults from eight countries
with a body mass index (BMI) ≥25 kg·m− 2
, impaired fasting glucose (IFG; 5.6–6.9 mmol·l
− 1
) and/or impaired glucose
tolerance (IGT; 7.8–11.0 mmol•l
− 1 2 h following oral glucose tolerance test, OGTT). Compositional isotemporal
substitution was used to estimate the association of reallocating time between behaviours. Results: Replacing MVPA with any other behaviour around the mean composition was associated with a poorer
cardio-metabolic risk profile. Conversely, when MVPA was increased, the relationships with cardiometabolic risk
markers was favourable but with smaller predicted changes than when MVPA was replaced. Further, substituting ST
with LIPA predicted improvements in cardio-metabolic risk markers, most notably insulin and HOMA-IR.
Conclusions: This is the first study to use compositional analysis of the 24 h movement composition in adults with
overweight/obesity and pre-diabetes. These findings build on previous literature that suggest replacing ST with
LIPA may produce metabolic benefits that contribute to the prevention and management of type 2 diabetes.
Furthermore, the asymmetry in the predicted change in risk markers following the reallocation of time to/from
MVPA highlights the importance of maintaining existing levels of MVPA.
Trial registration: ClinicalTrials.gov (NCT01777893)
Spatial and Temporal Patterns in Petrogenic Organic Carbon Mobilization During the Paleocene-Eocene Thermal Maximum
The Paleocene-Eocene Thermal Maximum (PETM) was a transient global warming event and is recognized in the geologic record by a prolonged negative carbon isotope excursion (CIE). The onset of the CIE was due to a rapid influx of 13C-depleted carbon into the ocean-atmosphere system. However, the mechanisms required to sustain the negative CIE remains unclear. Enhanced mobilization and oxidation of petrogenic organic carbon (OCpetro) has been invoked to explain elevated atmospheric carbon dioxide concentrations after the onset of the CIE. However, existing evidence is limited to the mid-latitudes and subtropics. Here, we determine whether: (a) enhanced mobilization and subsequent burial of OCpetro in marine sediments was a global phenomenon; and (b) whether it occurred throughout the PETM. To achieve this, we utilize a lipid biomarker approach to trace and quantify OCpetro burial in a global compilation of PETM-aged shallow marine sites (n = 7, including five new sites). Our results confirm that OCpetro mass accumulation rates (MARs) increased within the subtropics and mid-latitudes during the PETM, consistent with evidence of higher physical erosion rates and intense episodic rainfall events. High-latitude sites do not exhibit drastic changes in the source of organic carbon during the PETM and OCpetro MARs increase slightly or remain stable, perhaps due a more stable hydrological regime. Crucially, we also demonstrate that OCpetro MARs remained elevated during the recovery phase of the PETM. Although OCpetro oxidation was likely an important positive feedback mechanism throughout the PETM, we show that this feedback was both spatially and temporally variable
Defining the Critical Hurdles in Cancer Immunotherapy
ABSTRACT: Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC), convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators, others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet be overcome to improve outcomes of patients with cancer
Spin alignment of leading mesons in hadronic decays
Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K ∗ (892) 0 mesons from hadronic Z 0 decays have been measured over the full range of K ∗ 0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x p values above 0.3, with the matrix element ϱ 00 rising to 0.66 ± 0.11 for x p > 0.7. The values of the real part of the off-diagonal element ϱ 1 - 1 are negative at large x p , with a weighted average value of −0.09 ± 0.03 for x p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the q q system from the Z 0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x p range. The K ∗ 0 fragmentation function has also been measured and the total rate determined to be 0.74 ± 0.02 ± 0.02 K ∗ (892) 0 mesons per hadronic Z 0 decay
- …