116 research outputs found

    Advances in the treatment of hereditary transthyretin amyloidosis: A review

    Get PDF
    Introduction: Amyloid transthyretin amyloidosis (ATTR) is a progressive and often fatal disease caused by the buildup of mutated (hereditary ATTR [hATTR]; also known as ATTR variant [ATTRv]) or normal transthyretin (wild-type ATTR) throughout the body. Two new therapies-inotersen, an antisense oligonucleotide therapy, and patisiran, an RNA interference therapy-received marketing authorization and represent a significant advance in the treatment of amyloidosis. Herein, we describe the clinical presentation of ATTR, commonly used procedures in its diagnosis, and current treatment landscape for ATTR, with a focus on hATTR. Methods: A PubMed search from 2008 to September 2018 was conducted to review the literature on ATTR. Results: Until recently, there have been few treatment options for polyneuropathy of hATTR. Inotersen and patisiran substantially reduce the amyloidogenic precursor protein transthyretin and have demonstrated efficacy in patients with early- and late-stage disease and in slowing or improving neuropathy progression. In contrast, established therapies, such as liver transplantation, typically reserved for patients with early-stage disease, and tafamidis, indicated for the treatment of early-stage disease in Europe, or diflunisal, a nonsteroidal anti-inflammatory drug that is used off-label, are associated with side effects and/or unclear efficacy in certain patient populations. Thus, inotersen and patisiran are positioned to be the preferred therapeutic modalities. Conclusions: Important differences between inotersen and patisiran, including formulation, dosing, requirements for premedications, and safety monitoring, require an understanding and knowledge of each treatment for informed decision making.info:eu-repo/semantics/publishedVersio

    Pulmonary metastasectomy versus continued active monitoring in colorectal cancer (PulMiCC): a multicentre randomised clinical trial

    Get PDF
    BACKGROUND: Lung metastasectomy in the treatment of advanced colorectal cancer has been widely adopted without good evidence of survival or palliative benefit. We aimed to test its effectiveness in a randomised controlled trial (RCT). METHODS: Multidisciplinary teams in 13 hospitals recruited participants with potentially resectable lung metastases to a multicentre, two-arm RCT comparing active monitoring with or without metastasectomy. Other local or systemic treatments were decided by the local team. Randomisation was remote and stratified by site with minimisation for age, sex, primary cancer stage, interval since primary resection, prior liver involvement, the number of metastases, and carcinoembryonic antigen level. The central Trial Management Group were blind to patient allocation until completion of the analysis. Analysis was on intention to treat with a margin for non-inferiority of 10%. RESULTS: Between December 2010 and December 2016, 65 participants were randomised. Characteristics were well-matched in the two arms and similar to those in reported studies: age 35 to 86 years (interquartile range (IQR) 60 to 74); primary resection IQR 16 to 35 months previously; stage at resection T1, 2 or 3 in 3, 8 and 46; N1 or N2 in 31 and 26; unknown in 8. Lung metastases 1 to 5 (median 2); 16/65 had previous liver metastases; carcinoembryonic antigen normal in 55/65. There were no other interventions in the first 6 months, no crossovers from control to treatment, and no treatment-related deaths or major adverse events. The Hazard ratio for death within 5 years, comparing metastasectomy with control, was 0.82 (95%CI 0.43, 1.56). CONCLUSIONS: Because of poor and worsening recruitment, the study was stopped. The small number of participants in the trial (N = 65) precludes a conclusive answer to the research question given the large overlap in the confidence intervals in the proportions still alive at all time points. A widely held belief is that the 5-year absolute survival benefit with metastasectomy is about 35%: 40% after metastasectomy compared to < 5% in controls. The estimated survival in this study was 38% (23-62%) for metastasectomy patients and 29% (16-52%) in the well-matched controls. That is the new and important finding of this RCT. TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT01106261. Registered on 19 April 2010

    The G67E mutation in hMLH1 is associated with an unusual presentation of Lynch syndrome

    Get PDF
    Germline mutations in the mismatch repair (MMR) genes are associated with Lynch syndrome, also known as hereditary non-polyposis colorectal cancer (HNPCC) syndrome. Here, we characterise a variant of hMLH1 that confers a loss-of-function MMR phenotype. The mutation changes the highly conserved Gly67 residue to a glutamate (G67E) and is reminiscent of the hMLH1-p.Gly67Arg mutation, which is present in several Lynch syndrome cohorts. hMLH1-Gly67Arg has previously been shown to confer loss-of-function (Shimodaira et al, 1998), and two functional assays suggest that the hMLH1-Gly67Glu protein fails to sustain normal MMR functions. In the first assay, hMLH1-Gly67Glu abolishes the protein's ability to interfere with MMR in yeast. In the second assay, mutation of the analogous residue in yMLH1 (yMLH1-Gly64Glu) causes a loss-of-function mutator phenotype similar to yMLH1-Gly64Arg. Despite these molecular similarities, an unusual spectrum of tumours is associated with hMLH1-Gly67Glu, which is not typical of those associated with Lynch syndrome and differs from those found in families carrying the hMLH1-Gly67Arg allele. This suggests that hMLH1 may have different functions in certain tissues and/or that additional factors may modify the influence of hMLH1 mutations in causing Lynch syndrome

    RAD59 and RAD1 cooperate in translocation formation by single-strand annealing in Saccharomyces cerevisiae

    Get PDF
    Studies in the budding yeast, Saccharomyces cerevisiae, have demonstrated that a substantial fraction of double-strand break repair following acute radiation exposure involves homologous recombination between repetitive genomic elements. We have previously described an assay in S. cerevisiae that allows us to model how repair of multiple breaks leads to the formation of chromosomal translocations by single-strand annealing (SSA) and found that Rad59, a paralog of the single-stranded DNA annealing protein Rad52, is critically important in this process. We have constructed several rad59 missense alleles to study its function more closely. Characterization of these mutants revealed proportional defects in both translocation formation and spontaneous direct-repeat recombination, which is also thought to occur by SSA. Combining the rad59 missense alleles with a null allele of RAD1, which encodes a subunit of a nuclease required for the removal of non-homologous tails from annealed intermediates, substantially suppressed the low frequency of translocations observed in rad1-null single mutants. These data suggest that at least one role of Rad59 in translocation formation by SSA is supporting the machinery required for cleavage of non-homologous tails

    Mutator dynamics in sexual and asexual experimental populations of yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In asexual populations, mutators may be expected to hitchhike with associated beneficial mutations. In sexual populations, recombination is predicted to erode such associations, inhibiting mutator hitchhiking. To investigate the effect of recombination on mutators experimentally, we compared the frequency dynamics of a mutator allele (<it>msh2</it>Ξ”) in sexual and asexual populations of <it>Saccharomyces cerevisiae</it>.</p> <p>Results</p> <p>Mutator strains increased in frequency at the expense of wild-type strains in all asexual diploid populations, with some approaching fixation in 150 generations of propagation. Over the same period of time, mutators declined toward loss in all corresponding sexual diploid populations as well as in haploid populations propagated asexually.</p> <p>Conclusions</p> <p>We report the first experimental investigation of mutator dynamics in sexual populations. We show that a strong mutator quickly declines in sexual populations while hitchhiking to high frequency in asexual diploid populations, as predicted by theory. We also show that the <it>msh2Ξ” </it>mutator has a high and immediate realized cost that is alone sufficient to explain its decline in sexual populations. We postulate that this cost is indirect; namely, that it is due to a very high rate of recessive lethal or strongly deleterious mutation. However, we cannot rule out the possibility that <it>msh2</it>Ξ” also has unknown directly deleterious effects on fitness, and that these effects may differ between haploid asexual and sexual populations. Despite these reservations, our results prompt us to speculate that the short-term cost of highly deleterious recessive mutations can be as important as recombination in preventing mutator hitchhiking in sexual populations.</p

    Msh2 Blocks an Alternative Mechanism for Non-Homologous Tail Removal during Single-Strand Annealing in Saccharomyces cerevisiae

    Get PDF
    Chromosomal translocations are frequently observed in cells exposed to agents that cause DNA double-strand breaks (DSBs), such as ionizing radiation and chemotherapeutic drugs, and are often associated with tumors in mammals. Recently, translocation formation in the budding yeast, Saccharomyces cerevisiae, has been found to occur at high frequencies following the creation of multiple DSBs adjacent to repetitive sequences on non-homologous chromosomes. The genetic control of translocation formation and the chromosome complements of the clones that contain translocations suggest that translocation formation occurs by single-strand annealing (SSA). Among the factors important for translocation formation by SSA is the central mismatch repair (MMR) and homologous recombination (HR) factor, Msh2. Here we describe the effects of several msh2 missense mutations on translocation formation that suggest that Msh2 has separable functions in stabilizing annealed single strands, and removing non-homologous sequences from their ends. Additionally, interactions between the msh2 alleles and a null allele of RAD1, which encodes a subunit of a nuclease critical for the removal of non-homologous tails suggest that Msh2 blocks an alternative mechanism for removing these sequences. These results suggest that Msh2 plays multiple roles in the formation of chromosomal translocations following acute levels of DNA damage

    Evolution of Mutational Robustness in the Yeast Genome: A Link to Essential Genes and Meiotic Recombination Hotspots

    Get PDF
    Deleterious mutations inevitably emerge in any evolutionary process and are speculated to decisively influence the structure of the genome. Meiosis, which is thought to play a major role in handling mutations on the population level, recombines chromosomes via non-randomly distributed hot spots for meiotic recombination. In many genomes, various types of genetic elements are distributed in patterns that are currently not well understood. In particular, important (essential) genes are arranged in clusters, which often cannot be explained by a functional relationship of the involved genes. Here we show by computer simulation that essential gene (EG) clustering provides a fitness benefit in handling deleterious mutations in sexual populations with variable levels of inbreeding and outbreeding. We find that recessive lethal mutations enforce a selective pressure towards clustered genome architectures. Our simulations correctly predict (i) the evolution of non-random distributions of meiotic crossovers, (ii) the genome-wide anti-correlation of meiotic crossovers and EG clustering, (iii) the evolution of EG enrichment in pericentromeric regions and (iv) the associated absence of meiotic crossovers (cold centromeres). Our results furthermore predict optimal crossover rates for yeast chromosomes, which match the experimentally determined rates. Using a Saccharomyces cerevisiae conditional mutator strain, we show that haploid lethal phenotypes result predominantly from mutation of single loci and generally do not impair mating, which leads to an accumulation of mutational load following meiosis and mating. We hypothesize that purging of deleterious mutations in essential genes constitutes an important factor driving meiotic crossover. Therefore, the increased robustness of populations to deleterious mutations, which arises from clustered genome architectures, may provide a significant selective force shaping crossover distribution. Our analysis reveals a new aspect of the evolution of genome architectures that complements insights about molecular constraints, such as the interference of pericentromeric crossovers with chromosome segregation

    Mutator Suppression and Escape from Replication Error–Induced Extinction in Yeast

    Get PDF
    Cells rely on a network of conserved pathways to govern DNA replication fidelity. Loss of polymerase proofreading or mismatch repair elevates spontaneous mutation and facilitates cellular adaptation. However, double mutants are inviable, suggesting that extreme mutation rates exceed an error threshold. Here we combine alleles that affect DNA polymerase Ξ΄ (Pol Ξ΄) proofreading and mismatch repair to define the maximal error rate in haploid yeast and to characterize genetic suppressors of mutator phenotypes. We show that populations tolerate mutation rates 1,000-fold above wild-type levels but collapse when the rate exceeds 10βˆ’3 inactivating mutations per gene per cell division. Variants that escape this error-induced extinction (eex) rapidly emerge from mutator clones. One-third of the escape mutants result from second-site changes in Pol Ξ΄ that suppress the proofreading-deficient phenotype, while two-thirds are extragenic. The structural locations of the Pol Ξ΄ changes suggest multiple antimutator mechanisms. Our studies reveal the transient nature of eukaryotic mutators and show that mutator phenotypes are readily suppressed by genetic adaptation. This has implications for the role of mutator phenotypes in cancer
    • …
    corecore