3 research outputs found
Deep Learning-Based Intrusion Detection Methods in Cyber-Physical Systems: Challenges and Future Trends
A cyber-physical system (CPS) integrates various interconnected physical processes, computing resources, and networking units, as well as monitors the process and applications of the computing systems. Interconnection of the physical and cyber world initiates threatening security challenges, especially with the increasing complexity of communication networks. Despite efforts to combat these challenges, it is difficult to detect and analyze cyber-physical attacks in a complex CPS. Machine learning-based models have been adopted by researchers to analyze cyber-physical security systems. This paper discusses the security threats, vulnerabilities, challenges, and attacks of CPS. Initially, the CPS architecture is presented as a layered approach including the physical layer, network layer, and application layer in terms of functionality. Then, different cyber-physical attacks regarding each layer are elaborated, in addition to challenges and key issues associated with each layer. Afterward, deep learning models are analyzed for malicious URLs and intrusion detection in cyber-physical systems. A multilayer perceptron architecture is utilized for experiments using the malicious URL detection dataset and KDD Cup99 dataset, and its performance is compared with existing works. Lastly, we provide a roadmap of future research directions for cyber-physical security to investigate attacks concerning their source, complexity, and impact
Deep Learning-Based Intrusion Detection Methods in Cyber-Physical Systems: Challenges and Future Trends
A cyber-physical system (CPS) integrates various interconnected physical processes, computing resources, and networking units, as well as monitors the process and applications of the computing systems. Interconnection of the physical and cyber world initiates threatening security challenges, especially with the increasing complexity of communication networks. Despite efforts to combat these challenges, it is difficult to detect and analyze cyber-physical attacks in a complex CPS. Machine learning-based models have been adopted by researchers to analyze cyber-physical security systems. This paper discusses the security threats, vulnerabilities, challenges, and attacks of CPS. Initially, the CPS architecture is presented as a layered approach including the physical layer, network layer, and application layer in terms of functionality. Then, different cyber-physical attacks regarding each layer are elaborated, in addition to challenges and key issues associated with each layer. Afterward, deep learning models are analyzed for malicious URLs and intrusion detection in cyber-physical systems. A multilayer perceptron architecture is utilized for experiments using the malicious URL detection dataset and KDD Cup99 dataset, and its performance is compared with existing works. Lastly, we provide a roadmap of future research directions for cyber-physical security to investigate attacks concerning their source, complexity, and impact
IoT based smart home automation using blockchain and deep learning models
For the past few years, the concept of the smart house has gained popularity. The major challenges concerning a smart home include data security, privacy issues, authentication, secure identification, and automated decision-making of Internet of Things (IoT) devices. Currently, existing home automation systems address either of these challenges, however, home automation that also involves automated decision-making systems and systematic features apart from being reliable and safe is an absolute necessity. The current study proposes a deep learning-driven smart home system that integrates a Convolutional neural network (CNN) for automated decision-making such as classifying the device as “ON” and “OFF” based on its utilization at home. Additionally, to provide a decentralized, secure, and reliable mechanism to assure the authentication and identification of the IoT devices we integrated the emerging blockchain technology into this study. The proposed system is fundamentally comprised of a variety of sensors, a 5 V relay circuit, and Raspberry Pi which operates as a server and maintains the database of each device being used. Moreover, an android application is developed which communicates with the Raspberry Pi interface using the Apache server and HTTP web interface. The practicality of the proposed system for home automation is tested and evaluated in the lab and in real-time to ensure its efficacy. The current study also assures that the technology and hardware utilized in the proposed smart house system are inexpensive, widely available, and scalable. Furthermore, the need for a more comprehensive security and privacy model to be incorporated into the design phase of smart homes is highlighted by a discussion of the risks analysis’ implications including cyber threats, hardware security, and cyber attacks. The experimental results emphasize the significance of the proposed system and validate its usability in the real world