10 research outputs found

    Salicylic Acid Spraying Affects Secondary Metabolites and Radical Scavenging Capacity of Drought-Stressed Eriocephalus africanus L.

    No full text
    Drought is among the most common abiotic stresses that significantly influence plants’ growth and metabolic activities. In this study, Eriocephalus africanus L. (Asteraceae) was exposed to three levels of drought stress (irrigation with 75, 50, and 25% field capacity), together with foliar spraying of a plant hormone, salicylic acid (1, 2, and 3 mM SA), to observe the effect of drought stress and SA on its secondary metabolites. These growing conditions efficiently affected its total flavonoid and polyphenol contents (TFC and TPC, respectively). TFC and TPC increased by 53% and 35%, respectively, in stressed plants. Consequently, the radical scavenging activity improved by 140%. UPLC-ESI-MS/MS profiles of the extracts of control and stressed plants were assessed. Among identified polyphenols, 3,4-dicaffeoylquinic acid predominated in both samples, although it was detected in a greater percentage of stressed plants. Essential oils hydro-distilled from the plants showed a higher yield (1.05 ± 0.03% v/w) in stressed plants. Artemisia ketone prevailed in all oil samples’ GC/MS chromatograms, with a higher yield (42%) recorded in stressed plants. In conclusion, drought stress and SA spraying triggered the production of phenolic and essential oil components and increased the radical scavenging activity of E. africanus. Thus, agricultural conditions are optimized to provide a continuous supply of plant materials with appropriate amounts of bioactive constituents for economic industrialization

    Phytoconstituents and Pharmacological Activities of Indian Camphorweed (<i>Pluchea indica</i>): A Multi-Potential Medicinal Plant of Nutritional and Ethnomedicinal Importance

    No full text
    Pluchea indica (L.) Less. (Asteraceae) commonly known as Indian camphorweed, pluchea, or marsh fleabane has gained great importance in various traditional medicines for its nutritional and medicinal benefits. It is utilized to cure several illnesses such as lumbago, kidney stones, leucorrhea, inflammation, gangrenous and atonic ulcer, hemorrhoids, dysentery, eye diseases, itchy skin, acid stomach, dysuria, abdominal pain, scabies, fever, sore muscles, dysentery, diabetes, rheumatism, etc. The plant or its leaves in the form of tea are commonly used for treating diabetes and rheumatism. The plant is a rich source of calcium, vitamin C, dietary fiber, and β-carotene. Various biomolecules have been isolated from P. indica, including thiophenes, terpenes, quinic acids, sterols, lignans, phenolics, and flavonoids. The current review reports detailed information about the phytoconstituents and pharmacological relevance of P. indica and the link to its traditional uses. The reported studies validated the efficacy and safety of P. indica, as well as supported its traditional uses for treating various ailments and promoting health and well-being. Thus, this could encourage the development of this plant into a healthy food supplement or medicine for the prevention and treatment of various diseases. However, further studies on the drug interactions, mechanism of action, pharmacokinetics, toxicology, and metabolism, as well as clinical trials, should be carried out

    Curative effects of fucoidan on acetic acid induced ulcerative colitis in rats via modulating aryl hydrocarbon receptor and phosphodiesterase-4

    No full text
    Abstract Background Ulcerative colitis (UC) is an inflammatory bowel disease. Fucoidan, sulfated polysaccharide of brown seaweed, demonstrates various pharmacological actions as anti-inflammatory, anti-tumor and anti-bacterial effects. Therefore, we opt to investigate the potential curative effects of fucoidan in experimentally induced UC in rats through modulating aryl hydrocarbon receptor (AhR), phosphodiesterase-4 (PDE4), nuclear factor erythroid 2-related factor 2 (Nrf2) and Heme Oxygenase-1 (HO-1). Methods UC was induced in rats using intracolonic 2 ml of 4% acetic acid. Some rats were treated with 150 mg/kg fucoidan. Samples of colon were used to investigate gene and protein expression of AhR, PDE4, Nrf2, HO-1 and cyclic adenosine monophosphate (cAMP). Sections of colon were stained with hematoxylin/eosin, Alcian blue or immune-stained with anti-PDE4 antibodies. Results Investigation of hematoxylin/eosin stained micro-images of UC rats revealed damaged intestinal glands, severe hemorrhage and inflammatory cell infiltration, while sections stained with Alcian Blue revealed damaged and almost absent intestinal glands. UC results in elevated gene and protein expression of PDE4 associated with reduced gene and protein expression of AhR, IL-22, cAMP, Nrf2 and HO-1. Finally, UC increased the oxidative stress and reduced antioxidant activity in colon tissues. All morphological changes as well as gene and protein expressions were ameliorated by fucoidan. Conclusion Fucoidan could treat UC induced in rats. It restored the normal weight and length of colon associated with morphological improvement as found by examining sections stained with hematoxylin/eosin and Alcian Blue. The curative effects could be explained by enhancing antioxidant activity, reducing the expression of PDE4 and increasing the expression of AhR, IL-22 and cAMP

    Thiophenes—Naturally Occurring Plant Metabolites: Biological Activities and In Silico Evaluation of Their Potential as Cathepsin D Inhibitors

    No full text
    Naturally, thiophenes represent a small family of natural metabolites featured by one to five thiophene rings. Numerous plant species belonging to the family Asteraceae commonly produce thiophenes. These metabolites possessed remarkable bioactivities, including antimicrobial, antiviral, anti-inflammatory, larvicidal, antioxidant, insecticidal, cytotoxic, and nematicidal properties. The current review provides an update over the past seven years for the reported natural thiophene derivatives, including their sources, biosynthesis, spectral data, and bioactivities since the last review published in 2015. Additionally, with the help of the SuperPred webserver, an AI (artificial intelligence) tool, the potential drug target for the compounds was predicted. In silico studies were conducted for Cathepsin D with thiophene derivatives, including ADMET (drug absorption/distribution/metabolism/excretion/and toxicity) properties prediction, molecular docking for the binding interaction, and molecular dynamics to evaluate the ligand–target interaction stability under simulated physiological conditions

    Genistein ameliorated experimentally induced gastric ulcer in rats via inhibiting gastric tissues fibrosis by modulating Wnt/β-catenin/TGF-β/PKB pathway

    No full text
    ABSTRACTObjectives Gastric ulcer (GU) is a prevalent chronic digestive disease affecting about 10% of the world's population leading to gastrointestinal perforation and bleeding. Genistein is a legume flavonoid with antioxidants, anti-inflammatory and antibacterial activities. Therefore, we aimed to investigate the ability of genistein to reduce experimentally induced GU in rats by affecting gastric tissue fibrosis Wnt/β-catenin/TGF-β/SMAD4 pathway.Methods Thirty rats were used. Ten rats served as control, and GU was induced in twenty rats using a single dose of indomethacin (80 mg/kg) orally. Following induction of GU, ten were treated with genistein 25 mg/kg orally. The gastric tissues were isolated to investigate markers of gastric fibrosis, Wnt, β-catenin, transforming growth factor (TGF)-β, SMAD4, and Protein kinase B (PKB). In addition, gastric sections were stained with PAS and anti-TGF-β antibodies.Results Investigation GU micro-images revealed degeneration in both surface cells and glandular epithelial cells, which was improved by genistein. In addition, treatment with genistein significantly reduced the expression of Wnt, β-catenin, TGF-β, SMAD4, and PKB.Conclusion Besides antioxidant activity, genistein improves experimentally induced GU in rats, at least in part, via reduction of gastric tissue fibrosis as indicated by reduction in expression of Wnt, β-catenin, TGF-β, SMAD4, and PKB

    Association of Demographic Variables with the Awareness of Type 2 Diabetes Mellitus Patients (T2DM) among the Northwest Population in Saudi Arabia

    No full text
    The chronic hyperglycemia in diabetes is associated with long-term damage, dysfunction, and failure of different organs. Lack of patient education and knowledge about these complications can worsen the quality of a patient’s life. Hence, more efforts are needed to improve patient’s education especially in rural areas. Aim. Our objective is to explore the association between demographic variables and the knowledge of self-care practices in type 2 diabetes mellitus. Methods. We used observational cross-sectional descriptive study using a validated self-administered questionnaire in both Arabic and English languages as well. A descriptive correlation design analyzed the questionnaire completed by a convenience sample meeting the inclusion criteria. Results. A total of 100 patients met the inclusion criteria for the analysis out of 3251 patients who completed the questionnaire. The study population has low moderate knowledge in diabetes, moderate knowledge in self-care practices, and good knowledge about complications of nephropathy and cardiovascular disease. No significant association between demographic variables. However, better knowledge observed in male (p=0.028) and self-care practices with female (p=0.020). Further, educational status is significantly influencing the knowledge of diabetic patients. Conclusion. The study emphasizing irrespective of demographic variable and the importance of patient education to achieve well glycemic control

    Anticancer Effects of New Ceramides Isolated from the Red Sea Red Algae <i>Hypnea</i> <i>musciformis</i> in a Model of Ehrlich Ascites Carcinoma: LC-HRMS Analysis Profile and Molecular Modeling

    No full text
    Different classes of phytochemicals were previously isolated from the Red Sea algae Hypnea musciformis as sterols, ketosteroids, fatty acids, and terpenoids. Herein, we report the isolation of three fatty acids—docosanoic acid 4, hexadecenoic acid 5, and alpha hydroxy octadecanoic acid 6—as well as three ceramides—A (1), B (2), and C (3)—with 9-methyl-sphinga-4,8-dienes and phytosphingosine bases. Additionally, different phytochemicals were determined using the liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (LC-ESI-HRMS) technique. Ceramides A (1) and B (2) exhibited promising in vitro cytotoxic activity against the human breast adenocarcinoma (MCF-7) cell line when compared with doxorubicin as a positive control. Further in vivo study and biochemical estimation in a mouse model of Ehrlich ascites carcinoma (EAC) revealed that both ceramides A (1) and B (2) at doses of 1 and 2 mg/kg, respectively, significantly decreased the tumor size in mice inoculated with EAC cells. The higher dose (2 mg/kg) of ceramide B (2) particularly expressed the most pronounced decrease in serum levels of vascular endothelial growth factor -B (VEGF-B) and tumor necrosis factor-α (TNF-α) markers, as well as the expression levels of the growth factor midkine in tumor tissue relative to the EAC control group. The highest expression of apoptotic factors, p53, Bax, and caspase 3 was observed in the same group that received 2 mg/kg of ceramide B (2). Molecular docking simulations suggested that ceramides A (1) and B (2) could bind in the deep grove between the H2 helix and the Ser240-P250 loop of p53, preventing its interaction with MDM2 and leading to its accumulation. In conclusion, this study reports the cytotoxic, apoptotic, and antiangiogenic effects of ceramides isolated from the Red Sea algae Hypnea musciformis in an experimental model of EAC

    GC-MS/MS Quantification of EGFR Inhibitors, <i>β</i>-Sitosterol, Betulinic Acid, (+) Eriodictyol, (+) Epipinoresinol, and Secoisolariciresinol, in Crude Extract and Ethyl Acetate Fraction of <i>Thonningia sanguinea</i>

    No full text
    Medicinal plants are widely used in folk medicine to treat various diseases. Thonningia sanguinea Vahl is widespread in African traditional medicine, and exhibits antioxidant, antibacterial, antiviral, and anticancer activities. T. sanguinea is a source of phytomedicinal agents that have previously been isolated and structurally elucidated. Herein, gas chromatography combined with tandem mass spectrometry (GC-MS/MS) was used to quantify epipinoresinol, β-sitosterol, eriodictyol, betulinic acid, and secoisolariciresinol contents in the methanolic crude extract and its ethyl acetate fraction for the first time. The ethyl acetate fraction was rich in epipinoresinol, eriodictyol, and secoisolariciresinol at concentrations of 2.3, 3.9, and 2.4 mg/g of dry extract, respectively. The binding interactions of these compounds with the epidermal growth factor receptor (EGFR) were computed using a molecular docking study. The results revealed that the highest binding affinities for the EGFR signaling pathway were attributed to eriodictyol and secoisolariciresinol, with good binding energies of −19.93 and −16.63 Kcal/mol, respectively. These compounds formed good interactions with the key amino acid Met 769 as the co-crystallized ligand. So, the ethyl acetate fraction of T. sanguinea is a promising adjuvant therapy in cancer treatments

    Phyto-Phospholipid Conjugated Scorpion Venom Nanovesicles as Promising Carrier That Improves Efficacy of Thymoquinone against Adenocarcinoma Human Alveolar Basal Epithelial Cells

    No full text
    Lung cancer is a dangerous type of cancer in men and the third leading cause of cancer-related death in women, behind breast and colorectal cancers. Thymoquinone (THQ), a main compound in black seed essential oils, has a variety of beneficial effects, including antiproliferative, anti-inflammatory, and antioxidant properties. On the other hand, scorpion venom peptides (SV) induce apoptosis in the cancer cells, making it a promising anticancer agent. THQ, SV, and Phospholipon&reg; 90H (PL) were incorporated in a nano-based delivery platform to assess THQ&rsquo;s cellular uptake and antiproliferative efficacy against a lung cancer cell line derived from human alveolar epithelial cells (A549). Several nanovesicles were prepared and optimized using factorial experimental design. The optimized phytosome formulation contained 79.0 mg of PL and 170.0 mg of SV, with vesicle size and zeta potential of 209.9 nm and 21.1 mV, respectively. The IC50 values revealed that A549 cells were significantly more sensitive to the THQ formula than the plain formula and THQ. Cell cycle analysis revealed that THQ formula treatment resulted in significant cell cycle arrest at the S phase, increasing cell population in this phase by 22.1%. Furthermore, the THQ formula greatly increased cell apoptosis (25.17%) when compared to the untreated control (1.76%), plain formula (11.96%), or THQ alone (13.18%). The results also indicated that treatment with THQ formula significantly increased caspase-3, Bax, Bcl-2, and p53 mRNA expression compared to plain formula and THQ. In terms of the inflammatory markers, THQ formula significantly reduced the activity of TNF-&alpha; and NF-&kappa;B in comparison with the plain formula and THQ only. Overall, the findings from the study proved that a phytosome formulation of THQ could be a promising therapeutic approach for the treatment of lung adenocarcinoma
    corecore