15 research outputs found

    Melatonin rescues the mice brain against cisplatin-induced neurodegeneration, an insight into antioxidant and anti-inflammatory effects

    Get PDF
    Herein, we evaluated the neuroprotective effect of melatonin against cisplatin-induced oxidative damage, neuroinflammation, and synaptic dysfunction in mice. Cisplatin was administered at a dose of 2 mg/kg for eleven consecutive days to induce symptoms of cognitive impairment and neurodegeneration, while melatonin was administered at a 20 mg/kg dose for thirty consecutive days. We used various experimental techniques such as western blotting, immunofluorescence analysis, and oxidative stress marker assays to support our notion. Moreover, for cognitive impairment, we conducted behavioral analyses such as Morris Water Maze (MWM) and Y-Maze tests. The results indicated that melatonin attenuated oxidative stress by upregulating the expression of NF-E2-related factor-2 (Nrf2) dependent anti-oxidative protein levels. Similarly, melatonin positively modulated the expression of Sirt1 (a member of the sirtuin family), Phospho-AMPKα (Thr172), peroxisome proliferator-activated receptor (PPARγ), PPAR gamma coactivator 1 alpha (PGC-1α) coupled to downregulation of neuroinflammatory mediators and markers such as nuclear factor kappa-B (NF-κB), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β). Moreover, melatonin significantly upregulated the expression of synaptic markers such as postsynaptic density protein -95 (PSD-95), synaptosomal-associated protein 23 (SNAP-23), and synaptophysin compared to the cisplatin alone group. Furthermore, the results of behavior tests suggested that melatonin significantly improved the cognitive functions of the cisplatin injected mice

    Ginkgo biloba Extract Protects against Methotrexate-Induced Hepatotoxicity: A Computational and Pharmacological Approach

    Get PDF
    Ginkgo biloba extract possess several promising biological activities; currently, it is clinically employed in the management of several diseases. This research work aimed to extrapolate the antioxidant and anti-inflammatory effects of Ginkgo biloba (Gb) in methotrexate (MTX)-induced liver toxicity model. These effects were analyzed using different in vivo experimental approaches and by bioinformatics analysis. Male SD rats were grouped as follows: saline; MTX; Gb (pretreated for seven days with 60, 120, and 180 mg/kg daily dose before MTX treatment); silymarin (followed by MTX treatment); Gb 180 mg/kg daily only; and silymarin only. Histopathological results revealed that MTX induced marked hepatic injury, associated with a substantial surge in various hepatic enzymes such as alanine transaminase (ALT), aspartate transaminase (AST), and serum alkaline phosphatase (ALP). Furthermore, MTX caused the triggering of oxidative distress associated with a depressed antioxidant system. All these injury markers contributed to a significant release of apoptotic (caspase-3 and c-Jun N-terminal kinases (JNK)) and tumor necrosis factor (TNF-α)-like inflammatory mediators. Treatment with Gb counteracts MTX-mediated apoptosis and inflammation dose-dependently along with modulating the innate antioxidative mechanisms such as glutathione (GSH) and glutathione S-transferase (GST). These results were further supplemented by in silico study to analyze drug-receptor interactions (for several Gb constituents and target proteins) stabilized by a low energy value and with a good number of hydrogen bonds. These findings demonstrated that Gb could ameliorate MTX-induced elevated liver reactive oxygen species (ROS) and inflammation, possibly by JNK and TNF-α modulation

    Carveol Attenuates Seizure Severity and Neuroinflammation in Pentylenetetrazole-Kindled Epileptic Rats by Regulating the Nrf2 Signaling Pathway

    Get PDF
    Epilepsy is a neurodegenerative brain disorder characterized by recurrent seizure attacks. Numerous studies have suggested a strong correlation between oxidative stress and neuroinflammation in several neurodegenerative disorders including epilepsy. This study is aimed at investigating the neuroprotective effects of the natural compound carveol against pentylenetetrazole- (PTZ-) induced kindling and seizure model. Two different doses of carveol (10 mg/kg and 20 mg/kg) were administered to male rats to determine the effects and the effective dose of carveol and to further demonstrate the mechanism of action of nuclear factor E2-related factor (Nrf2) in PTZ-induced kindling model. Our results demonstrated reduced levels of innate antioxidants such as superoxide dismutase (SOD), catalase, glutathione-S-transferase (GST), and glutathione (GSH), associated with elevated lipid peroxidation (LPO) and inflammatory cytokines level such as tumor necrosis factor-alpha (TNF-α), and mediators like cyclooxygenase (COX-2) and nuclear factor kappa B (NFκB). These detrimental effects exacerbated oxidative stress and provoked a marked neuronal alteration in the cortex and hippocampus of PTZ-intoxicated animals that were associated with upregulated Nrf2 gene expression. Furthermore, carveol treatment positively modulated the antioxidant gene Nrf2 and its downstream target HO-1. To further investigate the role of Nrf2, an inhibitor of Nrf2 called all-trans retinoic acid (ATRA) was used, which further exacerbated PTZ toxicity. Moreover, carveol treatment induced cholinergic system activation by mitigating acetylcholinesterase level which is further linked to attenuated neuroinflammatory cascade. The extent of blood-brain barrier disruption was evaluated based on vascular endothelial growth factor (VEGF) expression. Taken together, our findings suggest that carveol acts as an Nrf2 activator and therefore induces downstream antioxidants and mitigates inflammatory insults through multiple pathways. This eventually alleviates PTZ-induced neuroinflammation and neurodegeneration

    Carveol a Naturally-Derived Potent and Emerging Nrf2 Activator Protects Against Acetaminophen-Induced Hepatotoxicity

    Get PDF
    Acetaminophen (N-acetyl p-aminophenol or APAP) is used worldwide for its antipyretic and anti-inflammatory potential. However, APAP overdose sometimes causes severe liver damage. In this study, we elucidated the protective effects of carveol in liver injury, using molecular and in silico approaches. Male BALB/c mice were divided into two experimental cohorts, to identify the best dose and to further assess the role of carveol in the nuclear factor E2-related factor; nuclear factor erythroid 2; p45-related factor 2 (Nrf2) pathway. The results demonstrated that carveol significantly modulated the detrimental effects of APAP by boosting endogenous antioxidant mechanisms, such as nuclear translocation of Nrf2 gene, a master regulator of the downstream antioxidant machinery. Furthermore, an inhibitor of Nrf2, called all-trans retinoic acid (ATRA), was used, which exaggerated APAP toxicity, in addition to abrogating the protective effects of carveol; this effect was accompanied by overexpression of inflammatory mediators and liver = 2ltoxicity biomarkers. To further support our notion, we performed virtual docking of carveol with Nrf2-keap1 target, and the resultant drug-protein interactions validated the in vivo findings. Together, our findings suggest that carveol could activate the endogenous master antioxidant Nrf2, which further regulates the expression of downstream antioxidants, eventually ameliorating the APAP-induced inflammation and oxidative stress

    Formulation and Characterization of Doxycycline-Loaded Polymeric Nanoparticles for Testing Antitumor/Antiangiogenic Action in Experimental Colon Cancer in Mice

    No full text
    Nanotherapeutics can enhance the characteristics of drugs, such as rapid systemic clearance and systemic toxicities. Polymeric nanoparticles (PRNPs) depend on dispersion of a drug in an amorphous state in a polymer matrix. PRNPs are capable of delivering drugs and improving their safety. The primary goal of this study is to formulate doxycycline-loaded PRNPs by applying the nanoprecipitation method. Eudragit S100 (ES100) (for DOX-PRNP1) and hydroxypropyl methyl cellulose phthalate HP55 (for DOX-PRNP2) were tested as the drug carrying polymers and the DOX-PRNP2 showed better characteristics and drug release % and was hence selected to be tested in the biological study. Six different experimental groups were formed from sixty male albino mice. 1,2,-Dimethylhydrazine was used for 16 weeks to induce experimental colon cancer. We compared the oral administration of DOX-PRNP2 in doses of 5 and 10 mg/kg with the free drug. Results indicated that DOX-PRNP2 had greater antitumor activity, as evidenced by an improved histopathological picture for colon specimens as well as a decrease in the tumor scores. In addition, when compared to free DOX, the DOX-PRNP2 reduced the angiogenic indicators VEGD and CD31 to a greater extent. Collectively, the findings demonstrated that formulating DOX in PRNPs was useful in enhancing antitumor activity and can be used in other models of cancers to verify their efficacy and compatibility with our study

    Role of Mammalian Target of Rapamycin in Ischemia Reperfusion Induced Kidney Injury

    Get PDF
    mTOR has anti-inflammatory effect and inhibition of mTOR initiates IL-12 and IL-6 production leading to inflammatory response. However; it is not fully known whether mTOR activation attenuates the inflammation in renal ischemia -reperfusion (IR). We hypothesized that activation of mTOR suppresses the inflammatory response induced by IR in the kidney. The aims of the study are to characterize the role of mTOR in normal kidney function and to investigate the role of mTOR activation in IR induced kidney inflammation. In rats subjected to IR injury (25 min renal artery occlusion) in the presence or absence of rapamycin, mTOR inhibitor, or Clenbuterol, mTOR activator, markers of renal function, injury and inflammation were measured. In euvolemic anesthetized rats, Rapamycin increased blood pressure (142 ± 5 vs. 120 ± 3mmHg; p\u3c0.05), decreased glomerular filtration rate (2 ± 0.3 to 0.6 ± 0.4 ml/min; p\u3c0.05) and increased urinary sodium excretion (15 ± 2 vs. 107 ± 42 mlvl/hr; P\u3c0.05).In IR rats (vehicle-treated), serum creatinine tended to increase (0.5+0.17 vs.1.3+0.1; p\u3e0.05). 2 Rapamycin increased serum creatinine (1.3 ± 0.1 vs. 5 ± 1.6 mg/dl; p\u3c0.05) with no significant difference in serum IL-6. Clenbuterol tended to antagonize the effect of rapamycin on serum creatinine (3.2 ± 1.6 vs. 5 ± 1.6 mg/dl; p\u3e0.05). In conclusion, mTOR plays a role in renal injury via an IL-6 independent pathwa

    Carvacrol Alleviates Hyperuricemia-Induced Oxidative Stress and Inflammation by Modulating the NLRP3/NF-κB Pathwayt

    Get PDF
    Purpose: Gouty arthritis is generally induced by the accumulation of monosodium urate (MSU) crystals in the joints due to elevated serum uric acid levels, potentially leading to serious pathological disorders such as nephrolithiasis, renal failure, and acute gouty arthritis. In this study, we aimed to validate the anti-gout effects of carvacrol, a phenolic monoterpene. Materials and Methods: Male Sprague-Dawley rats were divided into normal saline, disease group by injecting potassium mono-oxonate (PO) at a dose of 250 mg/kg, and three treatment groups, either with carvacrol 20 mg/kg or 50 mg/kg and 10 mg/kg allopurinol. The blood and tissue samples were subsequently collected and analyzed using different biochemical and histopathological techniques. Results: Our results revealed a significant increase in the serum levels of oxidative stress-related markers, namely, uric acid and C-reactive protein (CRP), and NLRP3 inflammasome-dependent inflammatory mediators, including nuclear factor kappa B (NF-κB) and tumor necrosis factor-alpha (TNF-α). Carvacrol administration for seven consecutive days exhibited significant anti-hyperuricemic and anti-inflammatory effects in a dose-dependent manner. Notably, the 50 mg/kg carvacrol treatment was observed to produce results similar to the allopurinol treatment. Furthermore, the renal safety of carvacrol was confirmed by the renal function test. Conclusion: Carvacrol potentially alleviates hyperuricemia-induced oxidative stress and inflammation by regulating the ROS/NRLP3/NF-κB pathway, thereby exerting protective effects against joint degeneration

    Natural Dietary Supplement, Carvacrol, Alleviates LPS-Induced Oxidative Stress, Neurodegeneration, and Depressive-Like Behaviors via the Nrf2/HO-1 Pathway

    Get PDF
    Major depressive disorder (MDD) is a debilitating human health condition characterized by mood swings and is associated with a high probability of suicide attempts. Several studies have reported a role of neuroinflammation in MMD, yet the efficacy of natural drug substances on neuroinflammation-associated depression has not been well-investigated. The present study examined the neuroprotective effects of carvacrol on lipopolysaccharide (LPS)-induced neuroinflammation, depression, and anxiety-like behavior. Methods Male Sprague Dawley rats were divided into two experimental cohorts to determine the effects and the effective dose of carvacrol (whether 20 mg/kg or 50 mg/kg), and further demonstrate the mechanism of action of nuclear factor E2-related factor (Nrf2) in depression. Results We found marked neuronal alterations in the cortex and hippocampus of LPS-intoxicated animals that were associated with higher inflammatory cytokine expression such as cyclooxygenase (COX2), tumor necrosis factor-alpha (TNF-α), and c-Jun N-terminal kinase (p-JNK). These detrimental effects exacerbated oxidative stress, as documented by a compromised antioxidant system due to high lipid peroxidase (LPO). Carvacrol (20 mg/kg) significantly reverted these changes by positively modulating the antioxidant gene Nrf2, a master regulator of the downstream antioxidant pathway. To further investigate the role of Nrf2, an inhibitor of Nrf2 called all-trans retinoic acid (ATRA) was used, which further exacerbated LPS toxicity with a higher oxidative and inflammatory cytokine level. To further support our notion, we performed virtual docking of carvacrol with the Nrf2-Keap1 target and the resultant drug-protein interactions validated the in vivo findings. Conclusion Collectively, our findings suggest that carvacrol (20 mg/kg) could activate the endogenous master antioxidant Nrf2, which further regulates the expression of downstream antioxidants, eventually ameliorating LPS-induced neuroinflammation and neurodegeneration

    The Link between Occurrence of Class I Integron and Acquired Aminoglycoside Resistance in Clinical MRSA Isolates

    No full text
    Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of nosocomial infections because of its high resistance. Here, we study the antibiotic resistance in MRSA clinical isolates and their relation to integron I occurrence. A total of 88 clinical Staphylococcusaureus isolates were collected. MRSA were identified by the disk diffusion method (DDM) and confirmed by PCR, and antibiogram was determined by DDM. Integron I, II and the aacA4 gene were investigated by PCR. Integrase-positive strains were analyzed for the presence of resistance gene cassettes by sequencing. All isolates were identified as MRSA by DDM and confirmed by PCR. All isolates were resistant to ampicillin and cefoxitin. Concerning aminoglycosides, the frequency of resistance was reported for streptomycin (60.7%), tobramycin (37.1%) gentamicin (36%), and for amikacin (15.9%). Integron I was detected in 41 isolates (46.6%), while integron II was detected in three isolates (3.4%). Sequencing of the integron I-cassette indicated the exclusive prevalence of addA gene variants mediating aminoglycoside resistance. The aacA4 gene was found in DNA of 31 isolates (35.22%). This study revealed the high existence of MRSA. Furthermore, the AacA4 gene and class I integron harboring aadA gene were predominant in MRSA isolates
    corecore