39,154 research outputs found
A Case Study in Meta-AUTOMATION: AUTOMATIC Generation of Congruence AUTOMATA For Combinatorial Sequences
This article is a sequel to a recent article by Eric Rowland and Reem
Yassawi, presenting yet another approach to the fast determination of
congruence properties of `famous' combinatorial sequences. The present approach
can be taught to a computer, and our beloved servant, Shalosh B. Ekhad, was
able to generate many new theorems, for famous sequences, of course, but also
for many obscure ones!Comment: 17 pages, accompanied by Maple package
Zero-Convex Functions, Perturbation Resilience, and Subgradient Projections for Feasibility-Seeking Methods
The convex feasibility problem (CFP) is at the core of the modeling of many
problems in various areas of science. Subgradient projection methods are
important tools for solving the CFP because they enable the use of subgradient
calculations instead of orthogonal projections onto the individual sets of the
problem. Working in a real Hilbert space, we show that the sequential
subgradient projection method is perturbation resilient. By this we mean that
under appropriate conditions the sequence generated by the method converges
weakly, and sometimes also strongly, to a point in the intersection of the
given subsets of the feasibility problem, despite certain perturbations which
are allowed in each iterative step. Unlike previous works on solving the convex
feasibility problem, the involved functions, which induce the feasibility
problem's subsets, need not be convex. Instead, we allow them to belong to a
wider and richer class of functions satisfying a weaker condition, that we call
"zero-convexity". This class, which is introduced and discussed here, holds a
promise to solve optimization problems in various areas, especially in
non-smooth and non-convex optimization. The relevance of this study to
approximate minimization and to the recent superiorization methodology for
constrained optimization is explained.Comment: Mathematical Programming Series A, accepted for publicatio
Plants included in the diet of Arabian Sand Gazelle (Reem) from Saudi Arabia
AbstractArabian Sand Gazelles are typical intermediate feeders (browsing and grazing) becoming concentrate selectors during the wet season (grazing) with a preference for short grasses and forbs throughout their range. At least, 80 plant species from 23 families have been published as being utilised by reem, mainly from five protected areas throughout Saudi Arabia. Knowledge of the diet of reem is important in assisting wildlife managers with practical decision making, especially with regard to reintroduction
The projector algorithm: a simple parallel algorithm for computing Voronoi diagrams and Delaunay graphs
The Voronoi diagram is a certain geometric data structure which has numerous
applications in various scientific and technological fields. The theory of
algorithms for computing 2D Euclidean Voronoi diagrams of point sites is rich
and useful, with several different and important algorithms. However, this
theory has been quite steady during the last few decades in the sense that no
essentially new algorithms have entered the game. In addition, most of the
known algorithms are serial in nature and hence cast inherent difficulties on
the possibility to compute the diagram in parallel. In this paper we present
the projector algorithm: a new and simple algorithm which enables the
(combinatorial) computation of 2D Voronoi diagrams. The algorithm is
significantly different from previous ones and some of the involved concepts in
it are in the spirit of linear programming and optics. Parallel implementation
is naturally supported since each Voronoi cell can be computed independently of
the other cells. A new combinatorial structure for representing the cells (and
any convex polytope) is described along the way and the computation of the
induced Delaunay graph is obtained almost automatically.Comment: This is a major revision; re-organization and better presentation of
some parts; correction of several inaccuracies; improvement of some proofs
and figures; added references; modification of the title; the paper is long
but more than half of it is composed of proofs and references: it is
sufficient to look at pages 5, 7--11 in order to understand the algorith
- …