7 research outputs found
Current-Use Pesticides in New Zealand Streams: Comparing Results From Grab Samples and Three Types of Passive Samplers
New Zealand uses more than a ton of pesticides each year; many of these are mobile, relatively persistent, and can make their way into waterways. While considerable effort goes into monitoring nutrients in agricultural streams and programs exist to monitor pesticides in groundwater, very little is known about pesticide detection frequencies, concentrations, or their potential impacts in New Zealand streams. We used the ‘Polar Organic Chemical Integrative Sampler’ (POCIS) approach and grab water sampling to survey pesticide concentrations in 36 agricultural streams in Waikato, Canterbury, Otago and Southland during a period of stable stream flows in Austral summer 2017/18. We employed a new approach for calculating site-specific POCIS sampling rates. We also tested two novel passive samplers designed to reduce the effects of hydrodynamic conditions on sampling rates: the ‘Organic-Diffusive Gradients in Thin Films’ (o-DGT) aquatic passive sampler and microporous polyethylene tubes (MPTs) filled with Strata-X sorbent. Multiple pesticides were found at most sites; two or more were detected at 78% of sites, three or more at 69% of sites, and four or more at 39% of sites. Chlorpyrifos concentrations were the highest, with a maximum concentration of 180 ng/L. Concentrations of the other pesticides were generally below 20 ng/L. Mean concentrations of individual pesticides were not correlated with in-stream nutrient concentrations. The majority of pesticides were detected most frequently in POCIS, presumably due to its higher sampling rate and the relatively low concentrations of these pesticides. In contrast, chlorpyrifos was most frequently detected in grab samples. Chlorpyrifos concentrations at two sites were above the 21-day chronic ‘No Observable Effect Concentration’ (NOEC) values for fish and another two sites had concentrations greater than 50% of the NOEC. Otherwise, concentrations were well-below NOEC values, but close to the New Zealand Environmental Exposure Limits in several cases
Current-use pesticides in New Zealand streams: comparing results from grab samples and three types of passive samplers
New Zealand uses more than a ton of pesticides each year; many of these are mobile, relatively persistent, and can make their way into waterways. While considerable effort goes into monitoring nutrients in agricultural streams and programs exist to monitor pesticides in groundwater, very little is known about pesticide detection frequencies, concentrations, or their potential impacts in New Zealand streams. We used the 'Polar Organic Chemical Integrative Sampler' (POCIS) approach and grab water sampling to survey pesticide concentrations in 36 agricultural streams in Waikato, Canterbury, Otago and Southland during a period of stable stream flows in Austral summer 2017/18. We employed a new approach for calculating site-specific POCIS sampling rates. We also tested two novel passive samplers designed to reduce the effects of hydrodynamic conditions on sampling rates: the 'Organic-Diffusive Gradients in Thin Films' (o-DGT) aquatic passive sampler and microporous polyethylene tubes (MPTs) filled with Strata-X sorbent. Multiple pesticides were found at most sites; two or more were detected at 78% of sites, three or more at 69% of sites, and four or more at 39% of sites. Chlorpyrifos concentrations were the highest, with a maximum concentration of 180 ng/L. Concentrations of the other pesticides were generally below 20 ng/L. Mean concentrations of individual pesticides were not correlated with in-stream nutrient concentrations. The majority of pesticides were detected most frequently in POCIS, presumably due to its higher sampling rate and the relatively low concentrations of these pesticides. In contrast, chlorpyrifos was most frequently detected in grab samples. Chlorpyrifos concentrations at two sites were above the 21-day chronic 'No Observable Effect Concentration' (NOEC) values for fish and another two sites had concentrations greater than 50% of the NOEC. Otherwise, concentrations were well-below NOEC values, but close to the New Zealand Environmental Exposure Limits in several cases
Determination of anabasine, anatabine, and nicotine biomarkers in wastewater by enhanced direct injection LC-MS/MS and evaluation of their in-sewer stability
Wastewater-based epidemiology (WBE) has been used to estimate tobacco use in the population. However, the increased use of nicotine replacement therapies and e-cigarettes contributes to the load of nicotine metabolites in wastewater, causing over-estimation of tobacco use if nicotine metabolites were used in WBE back-estimation. This study aims to develop a rapid method for determining the tobacco-specific biomarkers, anabasine and anatabine, in wastewater and to evaluate their in-sewer stability for better estimation of tobacco use by WBE. An enhanced direct injection LC-MS/MS was developed to quantify anabasine and anatabine as well as nicotine biomarkers (nicotine, cotinine and hydroxycotinine). The method was optimal when wastewater was filtered through 0.2 μm RC syringe filters and a pre-conditioned SPE cartridge (Oasis HLB 1 cc, 30 mg) before 50 μL was injected into the LC-MS/MS system. Limits of quantification varied between 2.7 and 54.9 ng/L with recoveries from 76% to 103% for all five compounds. In sewer reactors, anabasine and anatabine were less stable than cotinine and hydroxycotinine. They were more stable in the gravity sewer reactor wit