280 research outputs found

    Thermodynamics of Heat Shock Response

    Get PDF
    Production of heat shock proteins are induced when a living cell is exposed to a rise in temperature. The heat shock response of protein DnaK synthesis in E.coli for temperature shifts from temperature T to T plus 7 degrees, respectively to T minus 7 degrees is measured as function of the initial temperature T. We observe a reversed heat shock at low T. The magnitude of the shock increases when one increase the distance to the temperature T023oT_0 \approx 23^o, thereby mimicking the non monotous stability of proteins at low temperature. Further we found that the variation of the heat shock with T quantitatively follows the thermodynamic stability of proteins with temperature. This suggest that stability related to hot as well as cold unfolding of proteins is directly implemented in the biological control of protein folding. We demonstrate that such an implementation is possible in a minimalistic chemical network.Comment: To be published in Physical Review Letter

    A geometrical origin for the covariant entropy bound

    Full text link
    Causal diamond-shaped subsets of space-time are naturally associated with operator algebras in quantum field theory, and they are also related to the Bousso covariant entropy bound. In this work we argue that the net of these causal sets to which are assigned the local operator algebras of quantum theories should be taken to be non orthomodular if there is some lowest scale for the description of space-time as a manifold. This geometry can be related to a reduction in the degrees of freedom of the holographic type under certain natural conditions for the local algebras. A non orthomodular net of causal sets that implements the cutoff in a covariant manner is constructed. It gives an explanation, in a simple example, of the non positive expansion condition for light-sheet selection in the covariant entropy bound. It also suggests a different covariant formulation of entropy bound.Comment: 20 pages, 8 figures, final versio

    Massive Vector Mesons and Gauge Theory

    Get PDF
    We show that the requirements of renormalizability and physical consistency imposed on perturbative interactions of massive vector mesons fix the theory essentially uniquely. In particular physical consistency demands the presence of at least one additional physical degree of freedom which was not part of the originally required physical particle content. In its simplest realization (probably the only one) these are scalar fields as envisaged by Higgs but in the present formulation without the ``symmetry-breaking Higgs condensate''. The final result agrees precisely with the usual quantization of a classical gauge theory by means of the Higgs mechanism. Our method proves an old conjecture of Cornwall, Levin and Tiktopoulos stating that the renormalization and consistency requirements of spin=1 particles lead to the gauge theory structure (i.e. a kind of inverse of 't Hooft's famous renormalizability proof in quantized gauge theories) which was based on the on-shell unitarity of the SS-matrix. We also speculate on a possible future ghostfree formulation which avoids ''field coordinates'' altogether and is expected to reconcile the on-shell S-matrix point of view with the off-shell field theory structure.Comment: 53 pages, version to appear in J. Phys.

    Future research demands of the United European Gastroenterology (UEG) and its member societies

    Get PDF
    AIMS: The purpose of this study was to initiate and stimulate collaborative research efforts to support United European Gastroenterology Federation (UEG) member societies facilitating digestive health research in European on the one hand and, on the other hand, to increase EU-funded digestive health research by providing evidence and advice to funding bodies on priority areas. The UEG Research Committee initiated a survey of the current and future research interests of each individual UEG ordinary member society (specialist societies). METHODS: A questionnaire was sent by mail to 17 UEG ordinary member societies asking them to specify research demands related to the most urgent medical need including basic science research, translational research, clinical research, patient management research and research on disease prevention, in an open fashion but with limited word count. RESULTS: The responses from 13 societies were analysed in a semi-quantitative and in a qualitative way, and were clustered into five domains with two aspects each that were consented and shared between three and seven of the responding 13 societies. These clusters resemble topics such as ‘Hot topics’ (e.g. life-style, nutrition, microbial-host interaction), Biomarkers (genetic profiling, gut-brain interaction), Advanced technology (artificial intelligence, personalised medicine), Global research tools (bio-banking, EU trials), and Medical training (education, prevention). CONCLUSION: The generated topic list allows both collaboration between individual specialist societies as well as initiating and fostering future research calls at the EU level and beyond when approaching stakeholders

    NaV1.7 and pain: contribution of peripheral nerves

    Get PDF
    The sodium channel NaV1.7 contributes to action potential generation and propagation. Loss-of-function mutations in patients lead to congenital indifference to pain, though it remains unclear where on the way from sensory terminals to CNS the signalling is disrupted. We confirm that conditional deletion of NaV1.7 in advillin expressing sensory neurons leads to impaired heat and mechanical nociception in behavioural tests. With single-fiber recordings from isolated skin we found (1) a significantly lower prevalence of heat responsiveness to in normally mechanosensitive C-fibers, although (2) the rare heat responses appeared quite vigorous and (3) heat-induced CGRP release was normal. In biophysical respects, while electrical excitability, rheobase and chronaxy were normal (4) axonal conduction velocity was 20% slower than in congenic wildtype mice (5) and when challenged with double pulses (< 100 ms interval), the second action potential showed more pronounced latency increase (6). Upon prolonged electrical stimulation at 2 Hz, (7) activity-dependent slowing of nerve fiber conduction was markedly less and (8) was less likely to result in conduction failure of the mutant single-fibers. Finally, recording of compound action potentials from the whole saphenous nerve confirmed slower conduction and less activity-dependent slowing as well as the functional absence of a large subpopulation of C-fibers (9) in conditional Nav1.7 knock-outs. In conclusion, the clear deficits in somatic primary afferent functions shown in our study may be complemented by previously reported synaptic dysfunction and opioidergic inhibition, together accounting for the complete insensitivity to pain in the human mutants lacking Nav1.7

    Boundary conditions in the Unruh problem

    Get PDF
    We have analyzed the Unruh problem in the frame of quantum field theory and have shown that the Unruh quantization scheme is valid in the double Rindler wedge rather than in Minkowski spacetime. The double Rindler wedge is composed of two disjoint regions (RR- and LL-wedges of Minkowski spacetime) which are causally separated from each other. Moreover the Unruh construction implies existence of boundary condition at the common edge of RR- and LL-wedges in Minkowski spacetime. Such boundary condition may be interpreted as a topological obstacle which gives rise to a superselection rule prohibiting any correlations between rr- and ll- Unruh particles. Thus the part of the field from the LL-wedge in no way can influence a Rindler observer living in the RR-wedge and therefore elimination of the invisible "left" degrees of freedom will take no effect for him. Hence averaging over states of the field in one wedge can not lead to thermalization of the state in the other. This result is proved both in the standard and algebraic formulations of quantum field theory and we conclude that principles of quantum field theory does not give any grounds for existence of the "Unruh effect".Comment: 31 pages,1 figur

    Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95521/1/grl27053-sup-0003-fs02.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/95521/2/grl27053-sup-0002-fs01.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/95521/3/grl27053-sup-0005-txts01.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/95521/4/grl27053.pd

    Vacuum Fluctuations, Geometric Modular Action and Relativistic Quantum Information Theory

    Full text link
    A summary of some lines of ideas leading to model-independent frameworks of relativistic quantum field theory is given. It is followed by a discussion of the Reeh-Schlieder theorem and geometric modular action of Tomita-Takesaki modular objects associated with the quantum field vacuum state and certain algebras of observables. The distillability concept, which is significant in specifying useful entanglement in quantum information theory, is discussed within the setting of general relativistic quantum field theory.Comment: 26 pages. Contribution for the Proceedings of a Conference on Special Relativity held at Potsdam, 200

    Verification of model simulated mass balance, flow fields and tabular calving events of the Antarctic ice sheet against remotely sensed observations

    Get PDF
    The Antarctic ice sheet (AIS) has the greatestpotential for global sea level rise. This study simulates AISice creeping, sliding, tabular calving, and estimates the totalmass balances, using a recently developed, advanced icedynamics model, known as SEGMENT-Ice. SEGMENTIceis written in a spherical Earth coordinate system.Because the AIS contains the South Pole, a projectiontransfer is performed to displace the pole outside of thesimulation domain. The AIS also has complex ice-watergranularmaterial-bedrock configurations, requiringsophisticated lateral and basal boundary conditions.Because of the prevalence of ice shelves, a ‘girder yield’type calving scheme is activated. The simulations of presentsurface ice flow velocities compare favorably with InSARmeasurements, for various ice-water-bedrock configurations.The estimated ice mass loss rate during 2003–2009agrees with GRACE measurements and provides morespatial details not represented by the latter. The modelestimated calving frequencies of the peripheral ice shelvesfrom 1996 (roughly when the 5-km digital elevation andthickness data for the shelves were collected) to 2009compare well with archived scatterometer images. SEGMENT-Ice’s unique, non-local systematic calving schemeis found to be relevant for tabular calving. However, theexact timing of calving and of iceberg sizes cannot besimulated accurately at present. A projection of the futuremass change of the AIS is made, with SEGMENT-Iceforced by atmospheric conditions from three differentcoupled general circulation models. The entire AIS is estimatedto be losing mass steadily at a rate of*120 km3/a atpresent and this rate possibly may double by year 2100
    corecore