476 research outputs found
Cellulose-Supported Ionic Liquids for Low-Cost Pressure Swing CO2 Capture
Reducing the cost of capturing CO2 from point source emitters is a major challenge
facing carbon capture, utilization, and storage. While solid ionic liquids (SoILs) have been
shown to allow selective and rapid CO2 capture by pressure swing separation of flue
gases, expectations of their high cost hinders their potential application. Cellulose is
found to be a reliable, cheap, and sustainable support for a range of SoILs, reducing
the total sorbent cost by improving the efficiency of the ionic liquid (IL) through increased
ionic surface area that results from coating. It was also found that cellulose support
imparts surface characteristics, which increased total sorbent uptake. Combined, these
effects allowed a fourfold to eightfold improvement in uptake per gram of IL for SoILs
that have previously shown high uptake and a 9- to 39-fold improvement for those with
previously poor uptake. This offers the potential to drastically reduce the amount of IL
required to separate a given gas volume. Furthermore, the fast kinetics are retained, with
adsorbâdesorb cycles taking place over a matter of seconds. This means that rapid
cycling can be achieved, which results in high cumulative separation capacity relative to a
conventional temperature swing process. The supported materials show an optimum at
75% cellulose:25% IL as a result of even coating of the cellulose surface. The projected
reduction in plant size and operational costs represents a potentially ground-breaking
step forward in carbon dioxide capture technologies
Integrated CO2 capture and utilization using non-thermal plasmolysis
In this work, two simple processes for carbon dioxide (CO2) such as capture and utilization have been combined to form a whole systems approach to carbon capture and utilization (CCU). The first stage utilizes a pressure swing adsorption (PSA) system, which offers many benefits over current amine technologies. It was found that high selectivity can be achieved with rapid adsorption/desorption times while employing a cheap, durable sorbent that exhibits no sorbent losses and is easily regenerated by simple pressure drops. The PSA system is capable of capturing and upgrading the CO2 concentration of a waste gas stream from 12.5% to a range of higher purities. As many CCU end processes have some tolerance toward impurities in the feed, in the form of nitrogen (N2), for example, this is highly advantageous for this PSA system since CO2 purities in excess of 80% can be achieved with only a few steps and minimal energy input. Non-thermal plasma is one such technology that can tolerate, and even benefit from, small N2 impurities in the feed, therefore a 100% pure CO2 stream is not required. The second stage of this process deploys a nanosecond pulsed corona discharge reactor to split the captured CO2 into carbon monoxide (CO), which can then be used as a chemical feedstock for other syntheses. Corona discharge has proven industrial applications for gas cleaning and the benefit of pulsed power reduces the energy consumption of the system. The wire-in-cylinder geometry concentrates the volume of gas treated into the area of high electric field. Previous work has suggested that moderate conversions can be achieved (9%), compared to other non-thermal plasma methods, but with higher energy efficiencies (>60%)
Fast and Selective Separation of Carbon Dioxide from Dilute Streams by Pressure Swing Adsorption using Solid Ionic Liquids
The need to create a new approach to carbon capture processes that are economically viable has led to the design and synthesis of sorbents that selectively capture carbon dioxide by physisorption. Solid Ionic Liquids (SoILs) were targeted because of their tunable properties and solid form under operational conditions. Molecular modelling was used to identify candidate SoILs and a number of materials based on the low cost, environmentally friendly acetate anion were selected. The materials showed excellent selectivity for carbon dioxide over nitrogen and oxygen and moderate sorption capacity. However, the rate of capture was extremely fast, in the order of a few seconds for a complete adsorb-desorb cycle, under pressure swing conditions from 1 to 10 bar. This showed the importance of rate of sorption cycling over capacity and demonstrates that smaller inventories of sorbents and smaller process equipment are required to capture low concentration CO2 streams. Concentrated CO2 was isolated by releasing the pressure back to atmospheric. The low volatility and thermal stability of SoILs mean that both plant costs and materials costs can be reduced and plant size considerably reduced
Investigation into the effect of beam shape on melt pool characteristics using analytical modelling
An established analytical model is used to simulate an extended laser beam. Multiple Gaussian sources are superimposed to form a rectangular beam and results are compared with a single circular Gaussian source model as well as experimental results from a high power diode laser with a rectangular beam. Melt depth, and melt pool profile and progression have been predicted by modelling which are compared with experimental results from melting of Inconel 625. The model produced is shown to give a reasonable prediction of melt pool shape and can be usefully employed to help optimise overlap required for laser surface processing applications. The value of absorptivity used in the model can be used as a fitting parameter to optimise the match between experimental and predicted results
Killing-Yano tensors and some applications
The role of Killing and Killing-Yano tensors for studying the geodesic motion
of the particle and the superparticle in a curved background is reviewed.
Additionally the Papadopoulos list [74] for Killing-Yano tensors in G
structures is reproduced by studying the torsion types these structures admit.
The Papadopoulos list deals with groups G appearing in the Berger
classification, and we enlarge the list by considering additional G structures
which are not of the Berger type. Possible applications of these results in the
study of supersymmetric particle actions and in the AdS/CFT correspondence are
outlined.Comment: 36 pages, no figure
A pressure swing approach to selective CO2 sequestration using functionalized hypercrosslinked polymers
Functionalized hypercrosslinked polymers (HCPs) with surface areas between 213 and 1124 m2/g based on a range of monomers containing different chemical moieties were evaluated for CO2 capture using a pressure swing adsorption (PSA) methodology under humid conditions and elevated temperatures. The networks demonstrated rapid CO2 uptake reaching maximum uptakes in under 60 s. The most promising networks demonstrating the best selectivity and highest uptakes were applied to a pressure swing setup using simulated flue gas streams. The carbazole, triphenylmethanol and triphenylamine networks were found to be capable of converting a dilute CO2 stream (>20%) into a concentrated stream (>85%) after only two pressure swing cycles from 20 bar (adsorption) to 1 bar (desorption). This work demonstrates the ease with which readily synthesized functional porous materials can be successfully applied to a pressure swing methodology and used to separate CO2 from N2 from industrially applicable simulated gas streams under more realistic conditions
A pressure swing approach to selective CO2 sequestration using functionalised hypercrosslinked polymers
Functionalised hypercrosslinked polymers (HCPs) with surface areas between 213 â 1124 m^2/g based on a range of monomers containing different chemical moieties are evaluated for CO2 capture using a pressure swing adsorption (PSA) methodology under humid conditions and elevated temperatures. The networks demonstrated rapid CO2 uptake reaching maximum uptakes in under 60 seconds. The most promising networks demonstrating the best selectivity and highest uptakes were applied to a pressure swing setup using simulated flue gas streams. The carbazole, triphenylmethanol and triphenylamine networks were found to be capable of converting a dilute CO2 stream (> 20 %) into a concentrated stream (> 85 %) after only two pressure swing cycles from 20 bar (adsorption) to 1 bar (desorption). This work demonstrates the ease by which readily synthesised functional porous materials can be successfully applied to a pressure swing methodology and used to separate CO2 from N2 from industrially applicable simulated gas streams under more realistic conditions
On the Global Existence of Bohmian Mechanics
We show that the particle motion in Bohmian mechanics, given by the solution
of an ordinary differential equation, exists globally: For a large class of
potentials the singularities of the velocity field and infinity will not be
reached in finite time for typical initial values. A substantial part of the
analysis is based on the probabilistic significance of the quantum flux. We
elucidate the connection between the conditions necessary for global existence
and the self-adjointness of the Schr\"odinger Hamiltonian.Comment: 35 pages, LaTe
Fibers and global geometry of functions
Since the seminal work of Ambrosetti and Prodi, the study of global folds was
enriched by geometric concepts and extensions accomodating new examples. We
present the advantages of considering fibers, a construction dating to Berger
and Podolak's view of the original theorem. A description of folds in terms of
properties of fibers gives new perspective to the usual hypotheses in the
subject. The text is intended as a guide, outlining arguments and stating
results which will be detailed elsewhere
Dynamical aspects of mean field plane rotators and the Kuramoto model
The Kuramoto model has been introduced in order to describe synchronization
phenomena observed in groups of cells, individuals, circuits, etc... We look at
the Kuramoto model with white noise forces: in mathematical terms it is a set
of N oscillators, each driven by an independent Brownian motion with a constant
drift, that is each oscillator has its own frequency, which, in general,
changes from one oscillator to another (these frequencies are usually taken to
be random and they may be viewed as a quenched disorder). The interactions
between oscillators are of long range type (mean field). We review some results
on the Kuramoto model from a statistical mechanics standpoint: we give in
particular necessary and sufficient conditions for reversibility and we point
out a formal analogy, in the N to infinity limit, with local mean field models
with conservative dynamics (an analogy that is exploited to identify in
particular a Lyapunov functional in the reversible set-up). We then focus on
the reversible Kuramoto model with sinusoidal interactions in the N to infinity
limit and analyze the stability of the non-trivial stationary profiles arising
when the interaction parameter K is larger than its critical value K_c. We
provide an analysis of the linear operator describing the time evolution in a
neighborhood of the synchronized profile: we exhibit a Hilbert space in which
this operator has a self-adjoint extension and we establish, as our main
result, a spectral gap inequality for every K>K_c.Comment: 18 pages, 1 figur
- âŠ