1,822 research outputs found

    Restored Confidence in Iowa Banks

    Get PDF

    Restored Confidence in Iowa Banks

    Full text link

    Long-term follow-up of patients with advanced ovarian cancer treated in randomised clinical trials.

    Get PDF
    The data from two prospective randomised phase III trials that were initiated by the West Midlands Ovarian Cancer Study Group (WMOCSG) in 1981 and 1986, recruiting 167 and 195 patients respectively, have been pooled and the survival patterns of the 362 patients treated for advanced epithelial ovarian cancer within clinical trials in the West Midlands over the 10 year period (1981-91) have been explored. All patients had histologically proven epithelial ovarian cancer and all had residual disease after primary surgery, with the majority having stage III/IV disease. The primary treatment for all patients was debulking surgery followed by platinum-based chemotherapy. Eligible patients were further randomised to undergo a second debulking operation. The main end point, survival, was assessed using Kaplan-Meier curves and the log-rank test. A Cox proportional hazards model identified performance status (P = 0.002), residual disease (P = 0.005) and albumin level (P = 0.04) as independent prognostic factors. A multivariate model to predict survival curves for patients with the best and worst prognoses was developed with predicted 5 year survival of 30% and 3% for those in the best and worst prognostic groups respectively. The identification of clinical interventions to improve outcome is an urgent matter since the prognosis for patients with advanced ovarian cancer remains poor

    Observations on the Formation of Massive Stars by Accretion

    Full text link
    Observations of the H66a recombination line from the ionized gas in the cluster of newly formed massive stars, G10.6-0.4, show that most of the continuum emission derives from the dense gas in an ionized accretion flow that forms an ionized disk or torus around a group of stars in the center of the cluster. The inward motion observed in the accretion flow suggests that despite the equivalent luminosity and ionizing radiation of several O stars, neither radiation pressure nor thermal pressure has reversed the accretion flow. The observations indicate why the radiation pressure of the stars and the thermal pressure of the HII region are not effective in reversing the accretion flow. The observed rate of the accretion flow, 0.001 solar masses/yr, is sufficient to form massive stars within the time scale imposed by their short main sequence lifetimes. A simple model of disk accretion relates quenched HII regions, trapped hypercompact HII regions, and photo-evaporating disks in an evolutionary sequence

    Chemistry of dense clumps near moving Herbig-Haro objects

    Full text link
    Localised regions of enhanced emission from HCO+, NH3 and other species near Herbig-Haro objects (HHOs) have been interpreted as arising in a photochemistry stimulated by the HHO radiation on high density quiescent clumps in molecular clouds. Static models of this process have been successful in accounting for the variety of molecular species arising ahead of the jet; however recent observations show that the enhanced molecular emission is widespread along the jet as well as ahead. Hence, a realistic model must take into account the movement of the radiation field past the clump. It was previously unclear as to whether the short interaction time between the clump and the HHO in a moving source model would allow molecules such as HCO+ to reach high enough levels, and to survive for long enough to be observed. In this work we model a moving radiation source that approaches and passes a clump. The chemical picture is qualitatively unchanged by the addition of the moving source, strengthening the idea that enhancements are due to evaporation of molecules from dust grains. In addition, in the case of several molecules, the enhanced emission regions are longer-lived. Some photochemically-induced species, including methanol, are expected to maintain high abundances for ~10,000 years.Comment: 7 pages, 3 figure

    Initial Ionization of Compressible Turbulence

    Full text link
    We study the effects of the initial conditions of turbulent molecular clouds on the ionization structure in newly formed H_{ii} regions, using three-dimensional, photon-conserving radiative transfer in a pre-computed density field from three-dimensional compressible turbulence. Our results show that the initial density structure of the gas cloud can play an important role in the resulting structure of the H_{ii} region. The propagation of the ionization fronts, the shape of the resulting H_{ii} region, and the total mass ionized depend on the properties of the turbulent density field. Cuts through the ionized regions generally show ``butterfly'' shapes rather than spherical ones, while emission measure maps are more spherical if the turbulence is driven on scales small compared to the size of the H_{ii} region. The ionization structure can be described by an effective clumping factor ζ=<n>⋅/2\zeta=< n > \cdot /^2, where nn is number density of the gas. The larger the value of ζ\zeta, the less mass is ionized, and the more irregular the H_{ii} region shapes. Because we do not follow dynamics, our results apply only to the early stage of ionization when the speed of the ionization fronts remains much larger than the sound speed of the ionized gas, or Alfv\'en speed in magnetized clouds if it is larger, so that the dynamical effects can be negligible.Comment: 9 pages, 10 figures, version with high quality color images can be found in http://research.amnh.org/~yuexing/astro-ph/0407249.pd

    Mass Flows in Cometary UCHII Regions

    Full text link
    High spectral and spatial resolution, mid-infrared fine structure line observations toward two ultracompact HII (UCHII) regions (G29.96 -0.02 and Mon R2) allow us to study the structure and kinematics of cometary UCHII regions. In our earlier study of Mon R2, we showed that highly organized mass motions accounted for most of the velocity structure in that UCHII region. In this work, we show that the kinematics in both Mon R2 and G29.96 are consistent with motion along an approximately paraboloidal shell. We model the velocity structure seen in our mapping data and test the stellar wind bow shock model for such paraboloidal like flows. The observations and the simulation indicate that the ram pressures of the stellar wind and ambient interstellar medium cause the accumulated mass in the bow shock to flow along the surface of the shock. A relaxation code reproduces the mass flow's velocity structure as derived by the analytical solution. It further predicts that the pressure gradient along the flow can accelerate ionized gas to a speed higher than that of the moving star. In the original bow shock model, the star speed relative to the ambient medium was considered to be the exit speed of ionized gas in the shell.Comment: 34 pages, including 14 figures and 1 table, to be published in ApJ, September 200

    Low Velocity Ionized Winds from Regions Around Young O Stars

    Get PDF
    We have observed seven ultracompact HII regions in hydrogen recombination lines in the millimeter band. Toward four of these regions, there is a high velocity (full width to half maximum 60-80 km/s) component in the line profiles. The high velocity gas accounts for 35-70% of the emission measure within the beam. We compare these objects to an additional seven similar sources we have found in the literature. The broad recombination line objects (BRLOs) make up about 30% of all sources in complexes containing ultracompact HII regions. Comparison of spectral line and continuum data implies that the BRLOs coincide with sources with rising spectral indices, >=0.4 up to 100 GHz. Both the number of BRLOs and their frequency of occurrence within HII region complexes, when coupled with their small size and large internal motions, mean that the apparent contradiction between the dynamical and population lifetimes for BRLOs is even more severe than for ultracompact HII regions. We evaluate a number of models for the origin of the broad recombination line emission. The lifetime, morphology, and rising spectral index of the sources argue for photo- evaporated disks as the cause for BRLOs. Existing models for such regions, however, do not account for the large amounts of gas observed at supersonic velocities.Comment: 36 pages, 8 figure

    Modeling resilience and sustainability in ancient agricultural systems

    Get PDF
    The reasons why people adopt unsustainable agricultural practices, and the ultimate environmental implications of those practices, remain incompletely understood in the present world. Archaeology, however, offers unique datasets on coincident cultural and ecological change, and their social and environmental effects. This article applies concepts derived from ecological resilience thinking to assess the sustainability of agricultural practices as a result of long-term interactions between political, economic, and environmental systems. Using the urban center of Gordion, in central Turkey, as a case study, it is possible to identify mismatched social and ecological processes on temporal, spatial, and organizational scales, which help to resolve thresholds of resilience. Results of this analysis implicate temporal and spatial mismatches as a cause for local environmental degradation, and increasing extralocal economic pressures as an ultimate cause for the adoption of unsustainable land-use practices. This analysis suggests that a research approach that integrates environmental archaeology with a resilience perspective has considerable potential for explicating regional patterns of agricultural change and environmental degradation in the past
    • 

    corecore