2,782 research outputs found

    Attractive Forces Between Electrons in QED3_{3}

    Get PDF
    Vacuum polarization effects are non-perturbatively incorporated into the photon propagator to eliminate the severe infrared problems characteristic of QED3_3. The theory is thus rephrased in terms of a massive vector boson whose mass is e2/(8π)e^2/(8\pi). Subsequently, it is shown that electron-electron bound states are possible in QED3_3.Comment: revtex, 10 pages and four figures, IFUSP/P-98

    Production of nuclei and antinuclei in pp and Pb-Pb collisions with ALICE at the LHC

    Full text link
    We present first results on the production of nuclei and antinuclei such as (anti)deuterons, (anti)tritons, (anti)3He and (anti)4He in pp collisions at \s = 7 TeV and Pb-Pb collisions at \sNN = 2.76 TeV. These particles are identified using their energy loss (dE/dx) information in the Time Projection Chamber of the ALICE experiment. The Inner Tracking System gives a precise determination of the event vertex, by which primary and secondary particles are separated. The high statistics of over 360 million events for pp and 16 million events for Pb-Pb collisions give a significant number of light nuclei and antinuclei (Pb-Pb collisions: \sim30,000 anti-deuterons(dˉ\bar{d}) and \sim4 anti-alpha(4Heˉ\bar{^4He})). The predictions of various particle ratios from the THERMUS model is also discussed.Comment: 4 pages, 5 figures, parallel talk at Quark Matter 2011, May 23rd-28th 2011, Annecy, Franc

    Role of Protected Block Curriculum in Surgical Education

    Get PDF
    A protected block curriculum for surgical resident training began at the Medical College of Wisconsin in 2005. The curriculum has evolved with time as educational emphasis has changed. However, the concept of having resident learners relieved of clinical duty to focus on learning has not changed. Separate protected block curriculums are held for PGY1 and PGY 2 during which residents have no clinical responsibilities. These periods are defined at the beginning of each academic year and are distributed to all faculties. The systematic design, implementation, and evaluation of the protected block curriculum (PBC) Model provides an educationally grounded model for training surgical residents consistent with accreditation council for graduate medical education (ACGME) competency mandates. Resident evaluations consistently support the use of our PBC as a method to attain and practice skill sets in a nonthreatening environment. Faculty benefits are able to evaluate residents’ knowledge, skills, and attitudes in a nonclinical setting and engage residents as individuals. The format extended into the PGY3–5 years of training as it evolved. Over more than a decade of using PBC, we have performed a number of analyses on the program and even determined a cost for the program. The program continues to be adjusted to new technology and curriculum initiatives

    BFB \wedge F Term by Spontaneous Symmetry Breaking in a generalized Abelian Higgs Model

    Full text link
    We show that the topological BFB \wedge F term in 3+13+1 dimensions can be generated via spontaneous symmetry breaking in a generalized Abelian Higgs model. Further, we also show that even in DD dimensions (D3) ( D \geq 3 ) , a BFB \wedge F term gives rise to the topological massive excitations of the Abelian gauge field and that such a BFB \wedge F term can also be generated via Higgs mechanism.Comment: 7 pages, RevTeX, IP/BBSR/94-2

    On The Finite Temperature Chern-Simons Coefficient

    Full text link
    We compute the exact finite temperature effective action in a 0+1-dimensional field theory containing a topological Chern-Simons term, which has many features in common with 2+1-dimensional Chern-Simons theories. This exact result explains the origin and meaning of puzzling temperature dependent coefficients found in various naive perturbative computations in the higher dimensional models.Comment: 11 pages LaTeX; no figure

    Induced Parity-Breaking Term at Finite Chemical Potential and Temparature

    Full text link
    We exactly calculated the parity-odd term of the effective action induced by the fermions in 2+1 dimensions at finite chemical potential and finite temperature. It shows that gauge invariance is still respected. A more gerneral class of background configurations is considered. The knowledge of the reduced 1+1 determinant is required in order to draw exact conclusions about the gauge invariance of the parity-odd term in this latter case.Comment: 8 pages, LATEX, no figure

    On induced CPT-odd Chern-Simons terms in 3+1 effective action

    Full text link
    This paper was originally designated as Comment to the paper by R. Jackiw and V. Alan Kostelecky (hep-ph/9901358). We provide an example of the fermionic system, the superfluid 3He-A, in which the CPT-odd Chern-Simons terms in the effective action are unambiguously induced by chiral fermions. In this system the Lorentz and gauge invariances both are violated at high energy, but the behavior of the system beyond the cut-off is known. This allows us to construct the CPT-odd action, which combines the conventional 3+1 Chern-Simons term and the mixed axial-gravitational Chern-Simons term discussed in hep-ph/9905460. The influence of Chern-Simons term on the dynamics of the effective gauge field has been experimentally observed in rotating 3He-A.Comment: RevTex, 3 pages, no figures, extended version of Comment to the paper by R. Jackiw and V. Alan Kostelecky (hep-ph/9901358), to appear in JETP Let

    Derivative expansion and large gauge invariance at finite temperature

    Get PDF
    We study the 0+1 dimensional Chern-Simons theory at finite temperature within the framework of derivative expansion. We obtain various interesting relations, solve the theory within this framework and argue that the derivative expansion is not a suitable formalism for a study of the question of large gauge invariance.Comment: 12 pages, Late

    On the regularization scheme and gauge choice ambiguities in topologically massive gauge theories

    Full text link
    It is demonstrated that in the (2+1)-dimensional topologically massive gauge theories an agreement of the Pauli-Villars regularization scheme with the other schemes can be achieved by employing pairs of auxiliary fermions with the opposite sign masses. This approach does not introduce additional violation of discrete (P and T) symmetries. Although it breaks the local gauge symmetry only in the regulator fields' sector, its trace disappears completely after removing the regularization as a result of superrenormalizability of the model. It is shown also that analogous extension of the Pauli-Villars regularization in the vector particle sector can be used to agree the arbitrary covariant gauge results with the Landau ones. The source of ambiguities in the covariant gauges is studied in detail. It is demonstrated that in gauges that are softer in the infrared region (e.g. Coulomb or axial) nonphysical ambiguities inherent to the covariant gauges do not arise.Comment: Latex, 13 pages. Replaced mainly to change preprint references to journal one
    corecore