2 research outputs found

    The many faces of fear:A synthesis of methodological variation in characterizing predation risk from carnivores

    Get PDF
    Predators affect prey by killing them directly (lethal effects) and by inducing costly antipredator behaviours in living prey (risk effects). Risk effects can strongly influence prey populations and cascade through trophic systems. A prerequisite for assessing risk effects is characterizing the spatiotemporal variation in predation risk. Risk effects research has experienced rapid growth in the last several decades. However, preliminary assessments of the resultant literature suggest that researchers characterize predation risk using a variety of techniques. The implications of this methodological variation for inference and comparability among studies have not been well recognized or formally synthesized. We couple a literature survey with a hierarchical framework, developed from established theory, to quantify the methodological variation in characterizing risk using carnivore-ungulate systems as a case study. Via this process, we documented 244 metrics of risk from 141 studies falling into at least 13 distinct subcategories within three broader categories. Both empirical and theoretical work suggest risk and its effects on prey constitute a complex, multi-dimensional process with expressions varying by spatiotemporal scale. Our survey suggests this multi-scale complexity is reflected in the literature as a whole but often underappreciated in any given study, which complicates comparability among studies and leads to an overemphasis on documenting the presence of risk effects rather than their mechanisms or scale of influence. We suggest risk metrics be placed in a more concrete conceptual framework to clarify inference surrounding risk effects and their cascading effects throughout ecosystems. We recommend studies (i) take a multi-scale approach to characterizing risk; (ii) explicitly consider 'true' predation risk (probability of predation per unit time); and (iii) use risk metrics that facilitate comparison among studies and the evaluation of multiple competing hypotheses. Addressing the pressing questions in risk effects research, including how, to what extent and on what scale they occur, requires leveraging the advantages of the many methods available to characterize risk while minimizing the confusion caused by variability in their application.The NSF Graduate Research Fellowship Program (RJM), the Michigan State University MasterCard Foundation Scholars Program (ABM), CNPq-Brasil (LA), and the University of Montana Boone and Crockett Program (JJM).http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-26562018-07-30cs2017Centre for Wildlife Managemen

    Diagnosis of Atmospheric Drivers of High-Latitude Evapotranspiration Using Structural Equation Modeling

    No full text
    Evapotranspiration (ET) is a relevant component of the surface moisture budget and is associated with different drivers. The interrelated drivers cause variations at daily to interannual timescales. This study uses structural equation modeling to diagnose the drivers over an ensemble of 45 high-latitude sites, each of which provides at least several years of in situ measurements, including latent heat fluxes derived from eddy covariance flux towers. The sites are grouped by vegetation type (tundra, forest) and the presence or absence of permafrost to determine how the relative importance of different drivers depends on land surface characteristics. Factor analysis is used to quantify the common variance among the variables, while a path analysis procedure is used to assess the independent contributions of different variables. The variability of ET at forest sites generally shows a stronger dependence on relative humidity, while ET at tundra sites is more temperature-limited than moisture-limited. The path analysis shows that ET has a stronger direct correlation with solar radiation than with any other measured variable. Wind speed has the largest independent contribution to ET variability. The independent contribution of solar radiation is smaller because solar radiation also affects ET through various other drivers. The independent contribution of wind speed is especially apparent at forest wetland sites. For both tundra and forest vegetation, temperature loads higher on the first factor when permafrost is present, implying that ET will become less sensitive to temperature as permafrost thaws
    corecore