787 research outputs found
Hyperentangled States
We investigate a new class of entangled states, which we call
'hyperentangled',that have EPR correlations identical to those in the vacuum
state of a relativistic quantum field. We show that whenever hyperentangled
states exist in any quantum theory, they are dense in its state space. We also
give prescriptions for constructing hyperentangled states that involve an
arbitrarily large collection of systems.Comment: 23 pages, LaTeX, Submitted to Physical Review
The Free Will Theorem
On the basis of three physical axioms, we prove that if the choice of a
particular type of spin 1 experiment is not a function of the information
accessible to the experimenters, then its outcome is equally not a function of
the information accessible to the particles. We show that this result is
robust, and deduce that neither hidden variable theories nor mechanisms of the
GRW type for wave function collapse can be made relativistic. We also establish
the consistency of our axioms and discuss the philosophical implications.Comment: 31 pages, 6figure
Entanglement without nonlocality
We consider the characterization of entanglement from the perspective of a
Heisenberg formalism. We derive an original two-party generalized separability
criteria, and from this describe a novel physical understanding of
entanglement. We find that entanglement may be considered as fundamentally a
local effect, and therefore as a separable computational resource from
nonlocality. We show how entanglement differs from correlation physically, and
explore the implications of this new conception of entanglement for the notion
of classicality. We find that this understanding of entanglement extends
naturally to multipartite cases.Comment: 9 pages. Expanded introduction and sections on physical entanglement
and localit
Quantum mechanics and elements of reality inferred from joint measurements
The Einstein-Podolsky-Rosen argument on quantum mechanics incompleteness is
formulated in terms of elements of reality inferred from joint (as opposed to
alternative) measurements, in two examples involving entangled states of three
spin-1/2 particles. The same states allow us to obtain proofs of the
incompatibility between quantum mechanics and elements of reality.Comment: LaTeX, 12 page
Neurology
Contains reports on five research projects.United States Navy, Office of Naval Research (Nonr-609(39))United States Army Chemical Corps (DA-18-108-405-Cml-942)United States Air Force (Contract AF33(616)-7282)United States Public Health Service (B-3055, B-3090
Quasi-probability representations of quantum theory with applications to quantum information science
This article comprises a review of both the quasi-probability representations
of infinite-dimensional quantum theory (including the Wigner function) and the
more recently defined quasi-probability representations of finite-dimensional
quantum theory. We focus on both the characteristics and applications of these
representations with an emphasis toward quantum information theory. We discuss
the recently proposed unification of the set of possible quasi-probability
representations via frame theory and then discuss the practical relevance of
negativity in such representations as a criteria for quantumness.Comment: v3: typos fixed, references adde
Consistent Resolution of Some Relativistic Quantum Paradoxes
A relativistic version of the (consistent or decoherent) histories approach
to quantum theory is developed on the basis of earlier work by Hartle, and used
to discuss relativistic forms of the paradoxes of spherical wave packet
collapse, Bohm's formulation of Einstein-Podolsky-Rosen, and Hardy's paradox.
It is argued that wave function collapse is not needed for introducing
probabilities into relativistic quantum mechanics, and in any case should never
be thought of as a physical process. Alternative approaches to stochastic time
dependence can be used to construct a physical picture of the measurement
process that is less misleading than collapse models. In particular, one can
employ a coarse-grained but fully quantum mechanical description in which
particles move along trajectories, with behavior under Lorentz transformations
the same as in classical relativistic physics, and detectors are triggered by
particles reaching them along such trajectories. States entangled between
spacelike separate regions are also legitimate quantum descriptions, and can be
consistently handled by the formalism presented here. The paradoxes in question
arise because of using modes of reasoning which, while correct for classical
physics, are inconsistent with the mathematical structure of quantum theory,
and are resolved (or tamed) by using a proper quantum analysis. In particular,
there is no need to invoke, nor any evidence for, mysterious long-range
superluminal influences, and thus no incompatibility, at least from this
source, between relativity theory and quantum mechanics.Comment: Latex 42 pages, 7 figures in text using PSTrick
- …