1,950 research outputs found
Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport
Excitation transfer through interacting systems plays an important role in
many areas of physics, chemistry, and biology. The uncontrollable interaction
of the transmission network with a noisy environment is usually assumed to
deteriorate its transport capacity, especially so when the system is
fundamentally quantum mechanical. Here we identify key mechanisms through which
noise such as dephasing, perhaps counter intuitively, may actually aid
transport through a dissipative network by opening up additional pathways for
excitation transfer. We show that these are processes that lead to the
inhibition of destructive interference and exploitation of line broadening
effects. We illustrate how these mechanisms operate on a fully connected
network by developing a powerful analytical technique that identifies the
invariant (excitation trapping) subspaces of a given Hamiltonian. Finally, we
show how these principles can explain the remarkable efficiency and robustness
of excitation energy transfer from the light-harvesting chlorosomes to the
bacterial reaction center in photosynthetic complexes and present a numerical
analysis of excitation transport across the Fenna-Matthew-Olson (FMO) complex
together with a brief analysis of its entanglement properties. Our results show
that, in general, it is the careful interplay of quantum mechanical features
and the unavoidable environmental noise that will lead to an optimal system
performance.Comment: 16 pages, 9 figures; See Video Abstract at
http://www.quantiki.org/video_abstracts/09014454 . New revised version;
discussion of entanglement properties enhance
Switching the current through molecular wires
The influence of Gaussian laser pulses on the transport through molecular
wires is investigated within a tight-binding model for spinless electrons
including correlation. Motivated by the phenomenon of coherent destruction of
tunneling for monochromatic laser fields, situations are studied in which the
maximum amplitude of the electric field fulfills the conditions for the
destructive quantum effect. It is shown that, as for monochromatic laser
pulses, the average current through the wire can be suppressed. For parameters
of the model, which do not show a net current without any optical field, a
Gaussian laser pulse can establish a temporary current. In addition, the effect
of electron correlation on the current is investigated.Comment: 8 pages, 6 figure
Low- and high-frequency noise from coherent two-level systems
Recent experiments indicate a connection between the low- and high-frequency
noise affecting superconducting quantum systems. We explore the possibilities
that both noises can be produced by one ensemble of microscopic modes, made up,
e.g., by sufficiently coherent two-level systems (TLS). This implies a relation
between the noise power in different frequency domains, which depends on the
distribution of the parameters of the TLSs. We show that a distribution,
natural for tunneling TLSs, with a log-uniform distribution in the tunnel
splitting and linear distribution in the bias, accounts for experimental
observations.Comment: minor corrections, references adde
Coherent Transport through an interacting double quantum dot: Beyond sequential tunneling
Various causes for negative differential conductance in transport through an
interacting double quantum dot are investigated. Particular focus is given to
the interplay between the renormalization of the energy levels due to the
coupling to the leads and the decoherence of the states. The calculations are
performed within a basis of many-particle eigenstates and we consider the
dynamics given by the von Neumann-equation taking into account also processes
beyond sequential tunneling. A systematic comparison between the levels of
approximation and also with different formalisms is performed. It is found that
the current is qualitatively well described by sequential processes as long as
the temperature is larger than the level broadening induced by the contacts.Comment: 11 pages, 5 figures included in tex
Overdamping by weakly coupled environments
A quantum system weakly interacting with a fast environment usually undergoes
a relaxation with complex frequencies whose imaginary parts are damping rates
quadratic in the coupling to the environment, in accord with Fermi's ``Golden
Rule''. We show for various models (spin damped by harmonic-oscillator or
random-matrix baths, quantum diffusion, quantum Brownian motion) that upon
increasing the coupling up to a critical value still small enough to allow for
weak-coupling Markovian master equations, a new relaxation regime can occur. In
that regime, complex frequencies lose their real parts such that the process
becomes overdamped. Our results call into question the standard belief that
overdamping is exclusively a strong coupling feature.Comment: 4 figures; Paper submitted to Phys. Rev.
- …