15,631 research outputs found

    Asymmetric Two-component Fermion Systems in Strong Coupling

    Full text link
    We study the phase structure of a dilute two-component Fermi system with attractive interactions as a function of the coupling and the polarization or number difference between the two components. In weak coupling, a finite number asymmetry results in phase separation. A mixed phase containing symmetric superfluid matter and an asymmetric normal phase is favored. With increasing coupling strength, we show that the stress on the superfluid phase to accommodate a number asymmetry increases. Near the infinite-scattering length limit, we calculate the single-particle excitation spectrum and the ground-state energy at various polarizations. A picture of weakly-interacting quasi-particles emerges for modest polarizations. In this regime near infinite scattering length, and for modest polarizations, a homogeneous phase with a finite population of excited quasi-particle states characterized by a gapless spectrum should be favored over the phase separated state. These states may be realized in cold atom experiments.Comment: 4 pages, 3 figur

    Propensity to form amyloid fibrils is encoded as excitations in the free energy landscape of monomeric proteins

    Full text link
    Protein aggregation, linked to many of diseases, is initiated when monomers access rogue conformations that are poised to form amyloid fibrils. We show, using simulations of src SH3 domain, that mechanical force enhances the population of the aggregation prone (NN^*) states, which are rarely populated under force free native conditions, but are encoded in the spectrum of native fluctuations. The folding phase diagrams of SH3 as a function of denaturant concentration ([C][C]), mechanical force (ff), and temperature exhibit an apparent two-state behavior, without revealing the presence of the elusive NN^* states. Interestingly, the phase boundaries separating the folded and unfolded states at all [C] and ff fall on a master curve, which can can be quantitatively described using an analogy to superconductors in a magnetic field. The free energy profiles as a function of the molecular extension (RR), which are accessible in pulling experiments, (RR), reveal the presence of a native-like NN^* with a disordered solvent-exposed amino terminal β\beta-strand. The structure of the NN^* state is identical to that found in Fyn SH3 by NMR dispersion experiments. We show that the time scale for fibril formation can be estimated from the population of the NN^* state, determined by the free energy gap separating the native structure and the NN^* state, a finding that can be used to assess fibril forming tendencies of proteins. The structures of the NN^* state are used to show that oligomer formation and likely route to fibrils occur by a domain-swap mechanism in SH3 domain.Comment: 12 pages, 8 figures, 9 supplementary figures (on 5 more pages), 2 supplementary movies (on youtube

    On the ground state of gapless two flavor color superconductors

    Get PDF
    This paper is devoted to the study of some aspects of the instability of two flavor color superconductive quark matter. We find that, beside color condensates, the Goldstone boson related to the breaking of U(1)AU(1)_A suffers of a velocity instability. We relate this wrong sign problem, which implies the existence of a Goldstone current in the ground state or of gluonic condensation, to the negative squared Meissner mass of the 8th8^{th} gluon in the g2SC phase. Moreover we investigate the Meissner masses of the gluons and the squared velocity of the Goldstone in the multiple plane wave LOFF states, arguing that in such phases both the chromo-magnetic instability and the velocity instability are most probably removed. We also do not expect Higgs instability in such multiple plane wave LOFF. The true vacuum of gapless two flavor superconductors is thus expected to be a multiple plane wave LOFF state.Comment: 16 pages, RevTe3X4 styl

    Energy Requirements in Size Reduction of Solids

    Get PDF
    It is no exageration to state that of the many appr-oaches to understand different aspects of process of comminution, perhaps the most important one is the search for the sound relationship between the size and the energy used. Basic Laboratory investigations of comminution have been concerned mainly with 3 phases of the problem: 1) The micro crack pattern and its progress 2) Fragment size distribution of commuted products 3) new surface production as a relation to energy inpu

    Analytical and numerical evaluation of the Debye and Meissner masses in dense neutral three-flavor quark matter

    Full text link
    We calculate the Debye and Meissner masses and investigate chromomagnetic instability associated with the gapless color superconducting phase changing the strange quark mass MsM_s and the temperature TT. Based on the analytical study, we develop a computational procedure to derive the screening masses numerically from curvatures of the thermodynamic potential. When the temperature is zero, from our numerical results for the Meissner masses, we find that instability occurs for A1A_1 and A2A_2 gluons entirely in the gapless color-flavor locked (gCFL) phase, while the Meissner masses are real for A4A_4, A5A_5, A6A_6, and A7A_7 until MsM_s exceeds a certain value that is larger than the gCFL onset. We then handle mixing between color-diagonal gluons A3A_3, A8A_8, and photon AγA_\gamma, and clarify that, among three eigenvalues of the mass squared matrix, one remains positive, one is always zero because of an unbroken U(1)_\tilde{Q} symmetry, and one exhibits chromomagnetic instability in the gCFL region. We also examine the temperature effects that bring modifications into the Meissner masses. The instability found at large MsM_s for A4A_4, A5A_5, A6A_6, and A7A_7 persists at finite TT into the uu-quark color superconducting (uSC) phase which has uu-dd and ss-uu but no dd-ss quark pairing and also into the two-flavor color superconducting (2SC) phase characterized by uu-dd quark pairing only. The A1A_1 and A2A_2 instability also goes into the uSC phase, but the 2SC phase has no instability for A1A_1, A2A_2, and A3A_3. We map the unstable region for each gluon onto the phase diagram as a function of MsM_s and TT.Comment: 17 pages, 18 figure

    Testing the Ginzburg-Landau approximation for three-flavor crystalline color superconductivity

    Full text link
    It is an open challenge to analyze the crystalline color superconducting phases that may arise in cold dense, but not asymptotically dense, three-flavor quark matter. At present the only approximation within which it seems possible to compare the free energies of the myriad possible crystal structures is the Ginzburg-Landau approximation. Here, we test this approximation on a particularly simple "crystal" structure in which there are only two condensates Δexp(iq2r) \sim \Delta \exp(i {\bf q_2}\cdot {\bf r}) and Δexp(iq3r) \sim \Delta \exp(i {\bf q_3}\cdot {\bf r}) whose position-space dependence is that of two plane waves with wave vectors q2{\bf q_2} and q3{\bf q_3} at arbitrary angles. For this case, we are able to solve the mean-field gap equation without making a Ginzburg-Landau approximation. We find that the Ginzburg-Landau approximation works in the Δ0\Delta\to 0 limit as expected, find that it correctly predicts that Δ\Delta decreases with increasing angle between q2{\bf q_2} and q3{\bf q_3} meaning that the phase with q2q3{\bf q_2}\parallel {\bf q_3} has the lowest free energy, and find that the Ginzburg-Landau approximation is conservative in the sense that it underestimates Δ\Delta at all values of the angle between q2{\bf q_2} and q3{\bf q_3}.Comment: 16 pages, 6 figures. Small changes only. Version to appear in Phys. Rev.
    corecore