18,230 research outputs found

    Time Delay Induced Death in Coupled Limit Cycle Oscillators

    Get PDF
    We investigate the dynamical behaviour of two limit cycle oscillators that interact with each other via time delayed coupling and find that time delay can lead to amplitude death of the oscillators even if they have the same frequency. We demonstrate that this novel regime of amplitude "death" also exists for large collections of coupled identical oscillators and provide quantitative measures of this death region in the parameter space of coupling strength and time delay. Its implication for certain biological and physical applications is also pointed out.Comment: 4 aps formatted revtex pages; 3 figures; to be published in Phys. Rev. Let

    Neutral Larkin--Ovchinnikov--Fulde--Ferrell state and chromomagnetic instability in two-flavor dense QCD

    Full text link
    In two-flavor dense quark matter, we describe the dynamics in the single plane wave Larkin--Ovchinnikov--Fulde--Ferrell (LOFF) state satisfying the color and electric neutrality conditions. We find that because the neutral LOFF state itself suffers from a chromomagnetic instability in the whole region where it coexists with the (gapped/gapless) two-flavor superconducting (2SC/g2SC) phases, it cannot cure this instability in those phases. This is unlike the recently revealed gluonic phase which seems to be able to resolve this problem.Comment: Revtex4, 5 pages, 3 figures, clarifications added, to appear in Phys.Rev.Let

    Towards Benchmarking Scene Background Initialization

    Full text link
    Given a set of images of a scene taken at different times, the availability of an initial background model that describes the scene without foreground objects is the prerequisite for a wide range of applications, ranging from video surveillance to computational photography. Even though several methods have been proposed for scene background initialization, the lack of a common groundtruthed dataset and of a common set of metrics makes it difficult to compare their performance. To move first steps towards an easy and fair comparison of these methods, we assembled a dataset of sequences frequently adopted for background initialization, selected or created ground truths for quantitative evaluation through a selected suite of metrics, and compared results obtained by some existing methods, making all the material publicly available.Comment: 6 pages, SBI dataset, SBMI2015 Worksho

    Experimental Evidence of Time Delay Induced Death in Coupled Limit Cycle Oscillators

    Get PDF
    Experimental observations of time delay induced amplitude death in a pair of coupled nonlinear electronic circuits that are individually capable of exhibiting limit cycle oscillations are described. In particular, the existence of multiply connected death islands in the parameter space of the coupling strength and the time delay parameter for coupled identical oscillators is established. The existence of such regions was predicted earlier on theoretical grounds in [Phys. Rev. Lett. 80, 5109 (1998); Physica 129D, 15 (1999)]. The experiments also reveal the occurrence of multiple frequency states, frequency suppression of oscillations with increased time delay and the onset of both in-phase and anti-phase collective oscillations.Comment: 4 aps formatted RevTeX pages; 6 figures; to appear in Phys. Rev. Let

    Electronic screening and damping in magnetars

    Full text link
    We calculate the screening of the ion-ion potential due to electrons in the presence of a large background magnetic field, at densities of relevance to neutron star crusts. Using the standard approach to incorporate electron screening through the one-loop polarization function, we show that the magnetic field produces important corrections both at short and long distances. In extreme fields, realized in highly magnetized neutron stars called magnetars, electrons occupy only the lowest Landau levels in the relatively low density region of the crust. Here our results show that the screening length for Coulomb interactions between ions can be smaller than the inter-ion spacing. More interestingly, we find that the screening is anisotropic and the screened potential between two static charges exhibits long range Friedel oscillations parallel to the magnetic field. This long-range oscillatory behavior is likely to affect the lattice structure of ions, and can possibly create rod-like structures in the magnetar crusts. We also calculate the imaginary part of the electron polarization function which determines the spectrum of electron-hole excitations and plays a role in damping lattice phonon excitations. We demonstrate that even for modest magnetic fields this damping is highly anisotropic and will likely lead to anisotropic phonon heat transport in the outer neutron star crust.Comment: 14 pages, 5 Figure

    Collective excitations, instabilities, and ground state in dense quark matter

    Full text link
    We study the spectrum of light plasmons in the (gapped and gapless) two-flavor color superconducting phases and its connection with the chromomagnetic instabilities and the structure of the ground state. It is revealed that the chromomagnetic instabilities in the 4-7th and 8th gluonic channels correspond to two very different plasmon spectra. These spectra lead us to the unequivocal conclusion about the existence of gluonic condensates (some of which can be spatially inhomogeneous) in the ground state. We also argue that spatially inhomogeneous gluonic condensates should exist in the three-flavor quark matter with the values of the mass of strange quark corresponding to the gapless color-flavor locked state.Comment: Revtex, 5 pages, 4 figures, two figures and clarifications added, to appear in PRD (Rapid Communications
    corecore