54 research outputs found

    ISOLATION AND CHARACTERISATION OF RAPAMYCIN, TEMSIROLIMUS REGIO ISOMER (MONOESTER) AND TEMSIROLIMUS DIESTER IN TEMSIROLIMUS DRUG

    Get PDF
    Objective: Separation and identification of the process impurities in the manufacture of temsirolimus drug viz., rapamycin, temsirolimus regioisomer (monoester) (TS monoester), and temsirolimus diester (TS diester). Methods: During the process development of temsirolimus (TS), three process impurities-rapamycin, temsirolimus regioisomer (monoester) and temsirolimus diester-were detected by high-performance liquid chromatography (HPLC). Impurities were isolated by medium pressure liquid Chromatography (MPLC) and characterized by ESI-MS/MS, 1H NMR, FT-IR spectral data. Results: These impurities are characterised with the help of ESI MS/MS, 1H NMR, and FT-IR data. The impurities are identified and characterised as the process impurities. One of them is the starting material i.e. rapamycin and the other two are formed during the manufacture of the drug. This method offers advantages over using photodiode-array UV detection (LC-PDA) for the determination of peak purity, viz. components with similar UV spectra can be distinguished. Conclusion: The structures of these impurities were characterized as rapamycin, TS Monoester, and TS Diester. Out of these process impurities, rapamycin has been previously identified while the other two are previously unreported

    Unsteady flow of a nanofluid over a sphere with nonlinear Boussinesq approximation

    Get PDF
    A theoretical study is presented of transient mixed convection boundary layer flow of a nanofluid in the forward stagnation region of a heated sphere which is rotating with time dependent angular velocity. The effect of the non-linear Boussinesq approximation is taken into account. The nanofluid is treated as a two-component mixture i.e. nano-particles distributed homogenously in a base fluid (water or gas). The effects of the Brownian motion and thermophoresis are included for the nanofluid and constant wall temperature is imposed at the sphere surface. The first and second laws of thermodynamics are employed in order to study thermophysics as well as heat and mass transfer phenomena. By introducing appropriate similarity variables the governing equations are transformed into a system of dimensionless, nonlinear, coupled, ordinary differential equations which are solved numerically by applying the second-order accurate implicit finite difference Keller box method. The reliability and efficiency of the obtained numerical results are validated via comparison with the previously published results for special cases. The effects of various parameters on primary and secondary velocities, temperature, nanofluid volume fraction (concentration), primary and secondary shear stress functions, Nusselt number function (wall heat transfer rate) and Sherwood number function (wall nanoparticle mass transfer rate) are visualized. Furthermore the influence of non-linear temperature parameter, Brinkman parameter (ratio of Brinkman number to dimensionless temperature ratio), local Reynolds number and unsteadiness parameter on entropy generation number is computed. A strong elevation in entropy generation number is computed with both increasing Brinkman parameter and unsteadiness parameter. Primary and secondary surface shear stresses, Nusselt number and Sherwood number also increase with unsteadiness and rotation parameters. Primary shear stress is boosted with increasing mixed convection parameter and Brownian motion effect whereas secondary shear stress is depressed. Temperatures are suppressed with increasing nonlinear temperature parameter whereas nano-particle concentrations are elevated. Increasing thermophoresis parameter enhances both temperatures and nano-particle concentration values. The simulations find applications in rotating chemical engineering mixing systems and nano-coating transport phenomena

    Entropy analysis on convective film flow of power-law fluid with nanoparticles along an inclined plate

    Get PDF
    Entropy generation in a two-dimensional steady laminar thin film convection flow of a non-Newtonian nanofluid (Ostwald-de-Waele-type power-law fluid with embedded nanoparticles) along an inclined plate is examined theoretically. A revised Buongiorno model is adopted for nanoscale effects, which includes the effects of the Brownian motion and thermophoresis. The nanofluid particle fraction on the boundary is passively rather than actively controlled. A convective boundary condition is employed. The local nonsimilarity method is used to solve the dimensionless nonlinear system of governing equations. Validation with earlier published results is included. A decrease in entropy generation is induced due to fluid friction associated with an increasing value of the rheological power-law index. The Brownian motion of nanoparticles enhances thermal convection via the enhanced transport of heat in microconvection surrounding individual nanoparticles. A higher convective parameter implies more intense convective heating of the plate, which increases the temperature gradient. An increase in the thermophoresis parameter decreases the nanoparticle volume fraction near the wall and increases it further from the wall. Entropy generation is also reduced with enhancement of the thermophoresis effect throughout the boundary layer

    Radiation and chemical reaction effects on MHD flow along a moving vertical porous plate

    No full text
    This paper presents an analysis of the effects of magnetohydrodynamic force and buoyancy on convective heat and mass transfer flow past a moving vertical porous plate in the presence of thermal radiation and chemical reaction. The governing partial differential equations are reduced to a system of self-similar equations using the similarity transformations. The resultant equations are then solved numerically using the fourth order Runge-Kutta method along with the shooting technique. The results are obtained for the velocity, temperature, concentration, skin-friction, Nusselt number and Sherwood number. The effects of various parameters on flow variables are illustrated graphically, and the physical aspects of the problem are discussed
    • …
    corecore