3 research outputs found

    Kinetic nanofriction: a mechanism transition from quasi-continuous to ballistic-like Brownian regime

    Get PDF
    Surface diffusion of mobile adsorbates is not only the key to control the rate of dynamical processes on solid surfaces, e.g. epitaxial growth, but also of fundamental importance for recent technological applications, such as nanoscale electro-mechanical, tribological, and surface probing devices. Though several possible regimes of surface diffusion have been suggested, the nanoscale surface Brownian motion, especially in the technologically important low friction regimes, remains largely unexplored. Using molecular dynamics simulations, we show for the first time, that a C60 admolecule on a graphene substrate exhibits two distinct regimes of nanoscale Brownian motion: a quasi-continuous and a ballistic-like. A crossover between these two regimes is realized by changing the temperature of the system. We reveal that the underlying physical origin for this crossover is a mechanism transition of kinetic nanofriction arising from distinctive ways of interaction between the admolecule and the graphene substrate in these two regimes due to the temperature change. Our findings provide insight into surface mass transport and kinetic friction control at the nanoscale

    Numerical studies on elastic properties of graphene sheets and free vibration of carbon nanotubes by atomistic simulation and equivalent continuum modelling

    No full text
    The present research deals with determination of elastic properties of finite graphene sheets and CNTs by equivalent continuum modelling, and free vibration analysis of plain as well as fluid conveying CNTs by atomistic modelling of stiffness and mass properties.DOCTOR OF PHILOSOPHY (MPE
    corecore