3,347 research outputs found

    Question Answering on Knowledge Bases and Text using Universal Schema and Memory Networks

    Full text link
    Existing question answering methods infer answers either from a knowledge base or from raw text. While knowledge base (KB) methods are good at answering compositional questions, their performance is often affected by the incompleteness of the KB. Au contraire, web text contains millions of facts that are absent in the KB, however in an unstructured form. {\it Universal schema} can support reasoning on the union of both structured KBs and unstructured text by aligning them in a common embedded space. In this paper we extend universal schema to natural language question answering, employing \emph{memory networks} to attend to the large body of facts in the combination of text and KB. Our models can be trained in an end-to-end fashion on question-answer pairs. Evaluation results on \spades fill-in-the-blank question answering dataset show that exploiting universal schema for question answering is better than using either a KB or text alone. This model also outperforms the current state-of-the-art by 8.5 F1F_1 points.\footnote{Code and data available in \url{https://rajarshd.github.io/TextKBQA}}Comment: ACL 2017 (short

    An unconditionally stable algorithm for generalized thermoelasticity based on operator-splitting and time-discontinuous Galerkin finite element methods

    Get PDF
    An efficient time-stepping algorithm is proposed based on operator-splitting and the space–time discontinuous Galerkin finite element method for problems in the non-classical theory of thermoelasticity. The non-classical theory incorporates three models: the classical theory based on Fourier’s law of heat conduction resulting in a hyperbolic–parabolic coupled system, a non-classical theory of a fully-hyperbolic extension, and a combination of the two. The general problem is split into two contractive sub-problems, namely the mechanical phase and the thermal phase. Each sub-problem is discretized using the space–time discontinuous Galerkin finite element method. The sub-problems are stable which then leads to unconditional stability of the global product algorithm. A number of numerical examples are presented to demonstrate the performance and capability of the method

    The Synthesis of Functionalized Glycosides: Coordination Chemistry, Antiparasitic Activity, Precursors to Conformationally Constrained Macrocyclic Architectures and Photophysical Properties

    Get PDF
    The research presented in this thesis focuses on the synthesis of functional glycosides and the investigation of their properties. This included the study of their ability to form metal complexes and the study of the antiparasitic activity of both the free glycosides and metal complexes, the use of glycosides to serve as precursors to conformationally constrained macrocyclic molecules and a preliminary investigation of the photophysical properties of a collection of glycosidic compounds. Two novel classes of glycosylated chelators were synthesized and characterized; one containing a dinitrogen aminopyridyl chelating motif and another containing a dinitrogen/oxygen phenoxy-iminopyridyl metal binding unit. The ability of these compounds to form stable metal complexes with several metals (Cu(II), Zn(II) and Fe(II)) was investigated and the coordination complexes obtained were characterized. The anti-chagasic and anti-leishmanial activity of a selection of these compounds were evaluated in collaboration with the group of Prof André Luis Souza dos Santos at the Microbiology Institute Paulo de Góes in Universidade Federal do Rio de Janeiro (UFRJ), in addition to their toxicity towards mammalian macrophage cells. Several compounds with antiparasitic activity with excellent selectivity indexes were identified. From the analysis of these preliminary investigations, structural features were identified that appear to be necessary for their antiparasitic activity. Preliminary investigations into the probably mode of action involving the study of the susceptibility of the glycosylated compounds to enzymatic hydrolysis by β-glycosidase were carried out. The toxicity of the most potent compounds was also investigated using the Galleria Mellonella model. The use of carbohydrates as scaffolds to synthesize conformationally constrained macrocycles was also explored. To this end, several galactosyl donors were synthesized and their reactivity towards glycosylation with a serine derivative and 2- chloroethanol was investigated. Two different synthetic strategies were compared to highlight the intramolecular glycosylation as the most suitable route for macrocyclization. Finally, the photophysical properties of a collection of glycosides and structural analogues was examined. This involved the synthesis of a family of substituted iminopyridyl compounds and the preliminary analysis of their fluorescent properties. Based on these studies, a plausible explanation for the fluorescent behaviour of glycoside functionalised iminopyridyl compounds is proposed

    The Stability of Strange Star Crusts and Strangelets

    Full text link
    We construct strangelets, taking into account electrostatic effects, including Debye screening, and arbitrary surface tension sigma of the interface between vacuum and quark matter. We find that there is a critical surface tension sigma_crit below which large strangelets are unstable to fragmentation and below which quark star surfaces will fragment into a crystalline crust made of charged strangelets immersed in an electron gas. We derive a model-independent relationship between sigma_crit and two parameters that characterize any quark matter equation of state. For reasonable model equations of state, we find sigma_crit typically of order a few MeV/fm^2. If sigma <= sigma_crit, the size-distribution of strangelets in cosmic rays could feature a peak corresponding to the stable strangelets that we construct.Comment: 11 pages, LaTe

    High Quality, Transferable Graphene Grown on Single Crystal Cu(111) Thin Films on Basal-Plane Sapphire

    Full text link
    The current method of growing large-area graphene on Cu surfaces (polycrystalline foils and thin films) and its transfer to arbitrary substrates is technologically attractive. However, the quality of graphene can be improved significantly by growing it on single-crystal Cu surfaces. Here we show that high quality, large-area graphene can be grown on epitaxial single-crystal Cu(111) thin films on reusable basal-plane sapphire (alpha-Al2O3(0001)) substrates and then transferred to another substrate. While enabling graphene growth on Cu single-crystal surfaces, this method has the potential to avoid the high cost and extensive damage to graphene associated with sacrificing bulk single-crystal Cu during graphene transfer.Comment: 10 pages, 3 figure

    Instamapp

    Get PDF
    InstaMapp is a web application we started building in fall 2014. This application is intended for anyone who wants to locate a product from a department store. Anyone who would like to print or view a shopping list with aisle or department locations. Currently there isn’t a reliable application out that that exist in the technology space. InstaMapp currently integrates with Walmart’s API and supports a responsive design for mobile devices. During fall 2014, we built a proof of concept on Microsoft Windows Azure websites integrating with Intel Mashery Services for the API. We used the following Languages: PHP, JQuery, JavaScript, HTML 5, CSS3, and MySQL. The application was built on a MySQL database and supported JSON, JSONP, and XML data inputs. For the final project we scrapped the proof of concept and rebuild the application based on a new architectural design approach. We instead used .Net MVC instead of PHP, Bootstrap 3.0 for the UI design and Azure SQL instead of MySQL. We then incorporated the following Azure services: Azure Mobility, Worker Roles, Identity, Notification Hub, storage and Traffic Manager. Using this new design approach it allowed us to do the following more efficiently. Improve the registration / login process Dynamic scalability of application based on usage Enhanced security Allow for use to implement an Open API Database management Implement Push Notifications to users Allow other app developers to integrate with our application. On completion of our final project will have delivered the following functionality. Ability to search for products within Walmart’s API Ability to view / print or email Shopping list Allow users to register with the site using FB, twitter, MS ID or login form Build a API based on InstaMapp’s database Allow REST commands to query our API we created Deploy a native iOS, Android or Windows Mobile application using Xamarin in Visual Studio. We also built a Proof of concept IoT (Internet of things) device that uses sensor based technology and integrates directly with our application. Roles: Solution Architect / Developer – Andrew DiCosmo UI Designer / QA tester – Preethi Reddy Database / Developer – Venkat Nischey References: Since this application is a new concept we are creating code from scratch and don’t have a specific reference. We most likely will use Microsoft Azure help documentation, Google for UI code references & database best practices and our existing industry Knowledge

    The Strange Star Surface: A Crust with Nuggets

    Full text link
    We reexamine the surface composition of strange stars. Strange quark stars are hypothetical compact stars which could exist if strange quark matter was absolutely stable. It is widely accepted that they are characterized by an enormous density gradient ( 1026~10^{26} g/cm4^4) and large electric fields at surface. By investigating the possibility of realizing a heterogeneous crust, comprised of nuggets of strange quark matter embedded in an uniform electron background, we find that the strange star surface has a much reduced density gradient and negligible electric field. We comment on how our findings will impact various proposed observable signatures for strange stars.Comment: 4 pages, 2 figure

    Near-infrared observations of active asteroid (3200) Phaethon reveal no evidence for hydration

    Full text link
    Asteroid (3200) Phaethon is an active near-Earth asteroid and the parent body of the Geminid Meteor Shower. Because of its small perihelion distance, Phaethon's surface reaches temperatures sufficient to destabilize hydrated materials. We conducted rotationally resolved spectroscopic observations of this asteroid, mostly covering the northern hemisphere and the equatorial region, beyond 2.5-micron to search for evidence of hydration on its surface. Here we show that the observed part of Phaethon does not exhibit the 3-micron hydrated mineral absorption (within 2-sigma). These observations suggest that Phaethon's modern activity is not due to volatile sublimation or devolatilization of phyllosilicates on its surface. It is possible that the observed part of Phaethon was originally hydrated and has since lost volatiles from its surface via dehydration, supporting its connection to the Pallas family, or it was formed from anhydrous material

    Evaluation of In-Hospital Management for Febrile Illness\ud in Northern Tanzania before and after 2010 World Health\ud Organization Guidelines for the Treatment of Malaria

    Get PDF
    In 2010, the World Health Organization (WHO) published updated guidelines emphasizing and expanding recommendations for a parasitological confirmation of malaria before treating with antimalarials. This study aimed to assess differences in historic (2007–2008) (cohort 1) and recent (2011–2012) (cohort 2) hospital cohorts in the diagnosis and treatment of febrile illness in a low malaria prevalence area of northern Tanzania. We analyzed data from two prospective cohort studies that enrolled febrile adolescents and adults aged $13 years. All patients received quality-controlled aerobic blood cultures and malaria smears. We compared patients’ discharge diagnoses, treatments, and outcomes to assess changes in the treatment of malaria and bacterial infections. In total, 595 febrile inpatients were enrolled from two referral hospitals in Moshi, Tanzania. Laboratory-confirmed malaria was detected in 13 (3.2%) of 402 patients in cohort 1 and 1 (0.5%) of 193 patients in cohort 2 (p = 0.041). Antimalarials were prescribed to 201 (51.7%) of 389 smear-negative patients in cohort 1 and 97 (50.5%) of 192 smearnegative patients in cohort 2 (p = 0.794). Bacteremia was diagnosed from standard blood culture in 58 (14.5%) of 401 patients in cohort 1 compared to 18 (9.5%) of 190 patients in cohort 2 (p = 0.091). In cohort 1, 40 (69.0%) of 58 patients with a positive blood culture received antibacterials compared to 16 (88.9%) of 18 patients in cohort 2 (p = 0.094). In cohort 1, 43 (10.8%) of the 399 patients with known outcomes died during hospitalization compared with 12 (6.2%) deaths among 193 patients in cohort 2 (p = 0.073). In a setting of low malaria transmission, a high proportion of smear-negative patients were diagnosed with malaria and treated with antimalarials despite updated WHO guidelines on malaria treatment. Improved laboratory diagnostics for non-malaria febrile illness might help to curb this practice.\u
    • …
    corecore