10 research outputs found

    Administration of mesenchymal stem cells during ECMO results in a rapid decline in oxygenator performance

    Get PDF
    Mesenchymal stem cells (MSCs) have attracted attention as a potential therapy for Acute Respiratory Distress Syndrome (ARDS). At the same time, the use of extracorporeal membrane oxygenation (ECMO) has increased among patients with severe ARDS. To date, early clinical trials of MSCs in ARDS have excluded patients supported by ECMO. Here we provide evidence from an ex-vivo model of ECMO to suggest that the intravascular administration of MSCs during ECMO may adversely impact the function of a membrane oxygenator. The addition of clinical grade MSCs resulted in a reduction of flow through the circuit in comparison to controls (0.6 ±0.35 L min -1 vs 4.12 ± 0.03 L min -1 , at 240 minutes) and an increase in the transoygenator pressure gradient (101±9 mmHg vs 21±4 mmHg, at 240 minutes). Subsequent immunohistochemistry analysis demonstrated quantities of MSCs highly adherent to membrane oxygenator fibres. This study highlights the potential harm associated with MSC therapy during ECMO and suggests further areas of research required to advance the translation of cell therapy in this population. </p

    Combined Mesenchymal Stromal Cell Therapy and ECMO in ARDS:A Controlled Experimental Study in Sheep

    Get PDF
    Rationale: Mesenchymal stromal cell (MSC) therapy is a promising intervention for acute respiratory distress syndrome (ARDS), although trials to date have not investigated its use alongside extracorporeal membrane oxygenation (ECMO). Recent preclinical studies have suggested that combining these interventions may attenuate the efficacy of ECMO. Objectives: To determine the safety and efficacy of MSC therapy in a model of ARDS and ECMO. Methods: ARDS was induced in 14 sheep, after which they were established on venovenous ECMO. Subsequently, they received either endobronchial induced pluripotent stem cell-derived human MSCs (hMSCs) (n = 7) or cell-free carrier vehicle (vehicle control; n = 7). During ECMO, a low VT ventilation strategy was employed in addition to protocolized hemodynamic support. Animals were monitored and supported for 24 hours. Lung tissue, bronchoalveolar fluid, and plasma were analyzed, in addition to continuous respiratory and hemodynamic monitoring. Measurements and Main Results: The administration of hMSCs did not improve oxygenation (PaO2/FIO2 mean difference =2146mmHg; P= 0.076) or pulmonary function.However, histological evidence of lung injury(lung injuryscoremeandifference=20.07;P=0.04) and BALIL-8 were reduced. In addition, hMSC-treated animals had a significantly lower cumulative requirement for vasopressor. Despite endobronchial administration, animals treated with hMSCs had a significant elevation in transmembrane oxygenator pressure gradients. Thiswas accompanied by more pulmonary artery thromboses and adherent hMSCs found on explanted oxygenator fibers. Conclusions: Endobronchial hMSC therapy in an ovine model of ARDS and ECMO can impair membrane oxygenator function and does not improve oxygenation. These data do not recommend the safe use of hMSCs during venovenous ECMO. </p

    Randomized Controlled Trial of a Computer-Based, Tailored Intervention to Increase Smoking Cessation Counseling by Primary Care Physicians

    Get PDF
    OBJECTIVE: The primary care visit represents an important venue for intervening with a large population of smokers. However, physician adherence to the Smoking Cessation Clinical Guideline (5As) remains low. We evaluated the effectiveness of a computer-tailored intervention designed to increase smoking cessation counseling by primary care physicians. METHODS: Physicians and their patients were randomized to either intervention or control conditions. In addition to brief smoking cessation training, intervention physicians and patients received a one-page report that characterized the patients’ smoking habit and history and offered tailored recommendations. Physician performance of the 5As was assessed via patient exit interviews. Quit rates and smoking behaviors were assessed 6 months postintervention via patient phone interviews. Intervention effects were tested in a sample of 70 physicians and 518 of their patients. Results were analyzed via generalized and mixed linear modeling controlling for clustering. MEASUREMENTS AND MAIN RESULTS: Intervention physicians exceeded controls on “Assess” (OR 5.06; 95% CI 3.22, 7.95), “Advise” (OR 2.79; 95% CI 1.70, 4.59), “Assist–set goals” (OR 4.31; 95% CI 2.59, 7.16), “Assist–provide written materials” (OR 5.14; 95% CI 2.60, 10.14), “Assist–provide referral” (OR 6.48; 95% CI 3.11, 13.49), “Assist–discuss medication” (OR 4.72;95% CI 2.90, 7.68), and “Arrange” (OR 8.14; 95% CI 3.98, 16.68), all p values being < 0.0001. Intervention patients were 1.77 (CI 0.94, 3.34,p = 0.078) times more likely than controls to be abstinent (12 versus 8%), a difference that approached, but did not reach statistical significance, and surpassed controls on number of days quit (18.4 versus 12.2, p < .05) but not on number of quit attempts. CONCLUSIONS: The use of a brief computer-tailored report improved physicians’ implementation of the 5As and had a modest effect on patients’ smoking behaviors 6 months postintervention

    Engineering a multicellular vascular niche to model hematopoietic cell trafficking

    No full text
    Background: The marrow microenvironment and vasculature plays a critical role in regulating hematopoietic cell recruitment, residence, and maturation. Extensive in vitro and in vivo studies have aimed to understand the marrow cell types that contribute to hematopoiesis and the stem cell environment. Nonetheless, in vitro models are limited by a lack of complex multicellular interactions, and cellular interactions are not easily manipulated in vivo. Here, we develop an engineered human vascular marrow niche to examine the three-dimensional cell interactions that direct hematopoietic cell trafficking. Methods: Using soft lithography and injection molding techniques, fully endothelialized vascular networks were fabricated in type I collagen matrix, and co-cultured under flow with embedded marrow fibroblast cells in the matrix. Marrow fibroblast (mesenchymal stem cells (MSCs), HS27a, or HS5) interactions with the endothelium were imaged via confocal microscopy and altered endothelial gene expression was analyzed with RT-PCR. Monocytes, hematopoietic progenitor cells, and leukemic cells were perfused through the network and their adhesion and migration was evaluated. Results: HS27a cells and MSCs interact directly with the vessel wall more than HS5 cells, which are not seen to make contact with the endothelial cells. In both HS27a and HS5 co-cultures, endothelial expression of junctional markers was reduced. HS27a co-cultures promote perfused monocytes to adhere and migrate within the vessel network. Hematopoietic progenitors rely on monocyte-fibroblast crosstalk to facilitate preferential recruitment within HS27a co-cultured vessels. In contrast, leukemic cells sense fibroblast differences and are recruited preferentially to HS5 and HS27a co-cultures, but monocytes are able to block this sensitivity. Conclusions: We demonstrate the use of a microvascular platform that incorporates a tunable, multicellular composition to examine differences in hematopoietic cell trafficking. Differential recruitment of hematopoietic cell types to distinct fibroblast microenvironments highlights the complexity of cell-cell interactions within the marrow. This system allows for step-wise incorporation of cellular components to reveal the dynamic spatial and temporal interactions between endothelial cells, marrow-derived fibroblasts, and hematopoietic cells that comprise the marrow vascular niche. Furthermore, this platform has potential for use in testing therapeutics and personalized medicine in both normal and disease contexts

    Patterned human microvascular grafts enable rapid vascularization and increase perfusion in infarcted rat hearts

    No full text
    Vascularization and efficient perfusion are long-standing challenges in cardiac tissue engineering. Here we report engineered perfusable microvascular constructs, wherein human embryonic stem cell-derived endothelial cells (hESC-ECs) are seeded both into patterned microchannels and the surrounding collagen matrix. In vitro, the hESC-ECs lining the luminal walls readily sprout and anastomose with de novo-formed endothelial tubes in the matrix under flow. When implanted on infarcted rat hearts, the perfusable microvessel grafts integrate with coronary vasculature to a greater degree than non-perfusable self-assembled constructs at 5 days post-implantation. Optical microangiography imaging reveal that perfusable grafts have 6-fold greater vascular density, 2.5-fold higher vascular velocities and >20-fold higher volumetric perfusion rates. Implantation of perfusable grafts containing additional hESC-derived cardiomyocytes show higher cardiomyocyte and vascular density. Thus, pre-patterned vascular networks enhance vascular remodeling and accelerate coronary perfusion, potentially supporting cardiac tissues after implantation. These findings should facilitate the next generation of cardiac tissue engineering design

    Mesenchymal stem cells may ameliorate inflammation in an ex vivo model of extracorporeal membrane oxygenation

    No full text
    Mesenchymal stem cells exhibit immunomodulatory properties which are currently being investigated as a novel treatment option for Acute Respiratory Distress Syndrome. However, the feasibility and efficacy of mesenchymal stem cell therapy in the setting of extracorporeal membrane oxygenation is poorly understood. This study aimed to characterise markers of innate immune activation in response to mesenchymal stem cells during an ex vivo simulation of extracorporeal membrane oxygenation.Ex vivo extracorporeal membrane oxygenation simulations (n = 10) were conducted using a commercial extracorporeal circuit with a CO-enhanced fresh gas supply and donor human whole blood. Heparinised circuits (n = 4) were injected with 40 × 10-induced pluripotent stem cell-derived human mesenchymal stem cells, while the remainder (n = 6) acted as controls. Simulations were maintained, under physiological conditions, for 240 minutes. Circuits were sampled at 15, 30, 60, 120 and 240 minutes and assessed for levels of interleukin-1β, interleukin-6, interleukin-8, interleukin-10, tumour necrosis factor-α, transforming growth factor-β1, myeloperoxidase and α-Defensin-1. In addition, haemoglobin, platelet and leukocyte counts were performed.There was a trend towards reduced levels of pro-inflammatory cytokines in mesenchymal stem cell-treated circuits and a significant increase in transforming growth factor-β1. Blood cells and markers of neutrophil activation were reduced in mesenchymal stem cell circuits during the length of the simulation. As previously reported, the addition of mesenchymal stem cells resulted in a reduction of flow and increased trans-oxygenator pressures in comparison to controls.The addition of mesenchymal stem cells during extracorporeal membrane oxygenation may cause an increase in transforming growth factor-β1. This is despite their ability to adhere to the membrane oxygenator. Further studies are required to confirm these findings

    Strahlenbedingte Knochenschäden

    No full text
    corecore