9 research outputs found

    The Uncoupling Efficiency and Affinity of Flavonoids for Vesicles

    Get PDF
    The relative hydrophobicity and interaction of flavonoids with artificial membranes using vesicles was studied. At the same degree of hydroxylation, flavones were slightly more hydrophobic than flavanones. Flavonoids possess a hydrophobic character and are weak acids. For this reason, their uncoupling efficiency of the membrane potential was studied using cytochrome c oxidase vesicles. With emphasis on naringenin, it was shown that flavonoids affect both the transmembrane potential difference (V) and the transmembrane pH difference (V). Flavones were slightly more effective in uncoupling the membrane potential than flavanones; the 7OH group seems to play an important role. Hydroxylation of the exocyclic phenyl group decreased the uncoupling efficiency for all flavonoids studied. The flavonol quercitin exhibited hardly any uncoupling activity. Glycosylation abolished all uncoupling activity. The affinity of flavonoids for vesicle membranes was also studied using the fluorescence quenching of the membrane probe diphenylhexatriene. Flavonols exhibited a substantially higher affinity for liposomes than flavanones. This difference in affinity is assumed to be caused by the far more planar configuration of the flavonols in comparison with the tilted configuration of flavanones. Due to this planar configuration, it seems reasonable to assume that flavonols could more easily intercalate into the organised structures of the phospholipids within the vesicle membranes than flavanones. It is concluded that, in vivo, hardly any uncoupling activity of flavonoids can be anticipated. However, the quercitin plasma concentration in vivo can be such that, based on the affinity study, part of this flavonol could be associated with biological membranes to function there as, for example, an antioxidant.

    Changes in Cell Wall Polysaccharides of Green Bean Pods during Development

    No full text
    The changes in cell wall polysaccharides and selected cell wall-modifying enzymes were studied during the development of green bean (Phaseolus vulgaris L.) pods. An overall increase of cell wall material on a dry-weight basis was observed during pod development. Major changes were detected in the pectic polymers. Young, exponentially growing cell walls contained large amounts of neutral, sugar-rich pectic polymers (rhamnogalacturonan), which were water insoluble and relatively tightly connected to the cell wall. During elongation, more galactose-rich pectic polymers were deposited into the cell wall. In addition, the level of branched rhamnogalacturonan remained constant, while the level of linear homogalacturonan steadily increased. During maturation of the pods, galactose-rich pectic polymers were degraded, while the accumulation of soluble homogalacturonan continued. During senescence there was an increase in the amount of ionically complexed pectins, mainly at the expense of freely soluble pectins. The most abundant of the enzymes tested for was pectin methylesterase. Peroxidase, β-galactosidase, and α-arabinosidase were also detected in appreciable amounts. Polygalacturonase was detected only in very small amounts throughout development. The relationship between endogenous enzyme levels and the properties of cell wall polymers is discussed with respect to cell wall synthesis and degradation
    corecore