118 research outputs found
CURVACE - CURVed Artificial Compound Eyes
International audienceCURVACE aims at designing, developing, and assessing CURVed Artificial Compound Eyes, a radically novel family of vision systems. This innovative approach will provide more efficient visual abilities for embedded applications that require motion analysis in low-power and small packages. Compared to conventional cameras, artificial compound eyes will offer a much larger field of view with negligible distortion and exceptionally high temporal resolution in smaller size and weight that will fit the requirements of a wide range of applications
Long-term follow-up of patients with type 2 and non-ambulant type 3 spinal muscular atrophy (SMA) treated with olesoxime in the OLEOS trial
In a previous Phase 2 study, olesoxime had a favorable safety profile. Although the primary endpoint was not met, analyses suggested that olesoxime might help in the maintenance of motor function in patients with Types 2/3 SMA. This open-label extension study (OLEOS) further characterizes the safety, tolerability and efficacy of olesoxime over longer therapy durations. In OLEOS, no new safety risks were identified. Compared to matched natural history data, patients treated with olesoxime demonstrated small, non-significant changes in motor function over 52 weeks. Motor function scores were stable for 52 weeks but declined over the remainder of the study. The greatest decline in motor function was seen in patients ≤15 years old, and those with Type 2 SMA had faster motor function decline versus those with Type 3 SMA. Previous treatment with olesoxime in the Phase 2 study was not protective of motor function in OLEOS. Respiratory outcomes were stable in patients with Type 3 SMA >15 years old but declined in patients with Type 2 SMA and in patients with Type 3 SMA ≤15 years old. Overall, with no stabilization of functional measures observed over 130 weeks, OLEOS did not support significant benefit of olesoxime in patients with SMA
Overexpressed vs mutated Kras in murine fibroblasts: a molecular phenotyping study
Ras acts in signalling pathways regulating the activity of multiple cellular functions including cell proliferation, differentiation, and apoptosis. Amino-acid exchanges at position 12, 13, or 61 of the Kras gene convert the proto-oncogene into an activated oncogene. Until now, a direct comparison of genome-wide expression profiling studies of Kras overexpression and different Kras mutant forms in a single assay system has not been carried out. In our study, we focused on the direct comparison of global gene expression effects caused by mutations in codon 12 or 13 of the Kras gene and Kras overexpression in murine fibroblasts. We determined Kras cellular mRNA, Ras protein and activated Ras protein levels. Further, we compared our data to the proteome analysis of the same transfected cell lines. Both overexpression and mutations of Kras lead to common altered gene expression patterns. Only two genes, Lox and Col1a1, were reversely regulated in the Kras transfectants. They may contribute to the higher aggressiveness of the Kras codon 12 mutation in tumour progression. The functional annotation of differentially expressed genes revealed a high frequency of proteins involved in tumour growth and angiogenesis. These data further support the important role of these genes in tumour-associated angiogenesis
Pattern selection in the absolutely unstable regime as a nonlinear eigenvalue problem: Taylor vortices in axial flow
A unique pattern selection in the absolutely unstable regime of a driven,
nonlinear, open-flow system is analyzed: The spatiotemporal structures of
rotationally symmetric vortices that propagate downstream in the annulus of the
rotating Taylor-Couette system due to an externally imposed axial through-flow
are investigated for two different axial boundary conditions at the in- and
outlet. Unlike the stationary patterns in systems without through-flow the
spatiotemporal structures of propagating vortices are independent of parameter
history, initial conditions, and system's length. They do, however, depend on
the axial boundary conditions, the driving rate of the inner cylinder and the
through-flow rate. Our analysis of the amplitude equation shows that the
pattern selection can be described by a nonlinear eigenvalue problem with the
frequency being the eigenvalue. Approaching the border between absolute and
convective instability the eigenvalue problem becomes effectively linear and
the selection mechanism approaches that one of linear front propagation.
PACS:47.54.+r,47.20.Ky,47.32.-y,47.20.FtComment: 15 pages (LateX-file), 8 figures (Postscript
Diversity of Antibiotic-Active Bacteria Associated with the Brown Alga Laminaria saccharina from the Baltic Sea
Bacteria associated with the marine macroalga Laminaria saccharina, collected from the Kiel Fjord (Baltic Sea, Germany), were isolated and tested for antimicrobial activity. From a total of 210 isolates, 103 strains inhibited the growth of at least one microorganism from the test panel including Gram-negative and Gram-positive bacteria as well as a yeast. Most common profiles were the inhibition of Bacillus subtilis only (30%), B. subtilis and Staphylococcus lentus (25%), and B. subtilis, S. lentus, and Candida albicans (11%). In summary, the antibiotic-active isolates covered 15 different activity patterns suggesting various modes of action. On the basis of 16S rRNA gene sequence similarities >99%, 45 phylotypes were defined, which were classified into 21 genera belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Phylogenetic analysis of 16S rRNA gene sequences revealed that four isolates possibly represent novel species or even genera. In conclusion, L. saccharina represents a promising source for the isolation of new bacterial taxa and antimicrobially active bacteria
The use of genomic signature distance between bacteriophages and their hosts displays evolutionary relationships and phage growth cycle determination
<p>Abstract</p> <p>Background</p> <p>Bacteriophage classification is mainly based on morphological traits and genome characteristics combined with host information and in some cases on phage growth lifestyle. A lack of molecular tools can impede more precise studies on phylogenetic relationships or even a taxonomic classification. The use of methods to analyze genome sequences without the requirement for homology has allowed advances in classification.</p> <p>Results</p> <p>Here, we proposed to use genome sequence signature to characterize bacteriophages and to compare them to their host genome signature in order to obtain host-phage relationships and information on their lifestyle. We analyze the host-phage relationships in the four most representative groups of Caudoviridae, the dsDNA group of phages. We demonstrate that the use of phage genomic signature and its comparison with that of the host allows a grouping of phages and is also able to predict the host-phage relationships (lytic <it>vs</it>. temperate).</p> <p>Conclusions</p> <p>We can thus condense, in relatively simple figures, this phage information dispersed over many publications.</p
- …