7 research outputs found

    Development and Validation Methodology of the Nuss Procedure Surgical Planner

    Get PDF
    Pectus excavatum (PE) is a congenital chest wall deformity which is characterized, in most cases, by a deep depression of the sternum. A minimally invasive technique for the repair of PE (MIRPE), often referred to as the Nuss procedure, has been proven to be more advantageous than many other PE treatment techniques. The Nuss procedure consists of placement of a metal bar(s) underneath the sternum, thereby forcibly changing the geometry of the ribcage. Because of the prevalence of PE and the popularity of the Nuss procedure, the demand to perform this surgery is greater than ever. Therefore, a Nuss procedure surgical planner would be an invaluable planning tool ensuring an optimal physiological and aesthetic outcome. In this dissertation, the development and validation of the Nuss procedure planner is investigated. First, a generic model of the ribcage is developed to overcome the issue of missing cartilage when PE ribcages are segmented and facilitate the flexibility of the model to accommodate a range of deformity. Then, the CT data collected from actual patients with PE is used to create a set of patient specific finite element models. Based on finite element analyses performed over those models, a set force-displacement data set is created. This data is used to train an artificial neural network to generalize the data set. In order to evaluate the planning process, a methodology which uses an average shape of the chest for comparison with results of the Nuss procedure planner is developed. This method is based on a sample of normal chests obtained from the ODU male population using laser surface scanning and overcomes challenging issues such as hole-filling, scan registration and consistency. Additionally, this planning simulator is optimized so that it can be used for training purposes. Haptic feedback and inertial tracking is implemented, and the force-displacement model is approximated using a neural network approach and evaluated for real-time performance. The results show that it is possible to utilize this approximation of the force-displacement model for the Nuss procedure simulator. The detailed ribcage model achieves real-time performance

    The Use of Artificial Intelligence to Detect Students Sentiments and Emotions in Gross Anatomy Reflections

    Get PDF
    Students\u27 reflective writings in gross anatomy provide a rich source of complex emotions experienced by learners. However, qualitative approaches to evaluating student writings are resource heavy and timely. To overcome this, natural language processing, a nascent field of artificial intelligence that uses computational techniques for the analysis and synthesis of text, was used to compare health professional students\u27 reflections on the importance of various regions of the body to their own lives and those of the anatomical donor dissected. A total of 1365 anonymous writings (677 about a donor, 688 about self) were collected from 132 students. Binary and trinary sentiment analysis was performed, as well as emotion detection using the National Research Council Emotion Lexicon which classified text into eight emotions: anger, fear, sadness, disgust, surprise, anticipation, trust, and joy. The most commonly written about body regions were the hands, heart, and brain. The reflections had an overwhelming positive sentiment with major contributing words “love” and “loved.” Predominant words such as “pain” contributed to the negative sentiments and reflected various ailments experienced by students and revealed through dissections of the donors. The top three emotions were trust, joy, and anticipation. Each body region evoked a unique combination of emotions. Similarities between student self-reflections and reflections about their donor were evident suggesting a shared view of humanization and person centeredness. Given the pervasiveness of reflections in anatomy, adopting a natural language processing approach to analysis could provide a rich source of new information related to students\u27 previously undiscovered experiences and competencies

    Promoting Skills in Children and Teens with Autism Spectrum Disorder through Play and Steam

    Get PDF
    Individuals with autism spectrum disorder (ASD) have a low employment rate. This is caused by a lack of support from employment resources and the negative stigma associated with common characteristics associated with ASD. With limited career-building activities and events, it is difficult for individuals with ASD to identify their skills, strengths, and career opportunities. Parental support is crucial when seeking employment opportunities for their children. Through the use of play, children with ASD engaged and explored their skills with science, technology, engineering, arts, and math-centered activities. This paper highlights the events and shows the proposed redesign for an additional workshop

    Murder on the VR Express: Studying the Impact of Thought Experiments at a Distance in Virtual Reality

    Get PDF
    Hypothetical thought experiments allow researchers to gain insights into widespread moral intuitions and provide opportunities for individuals to explore their moral commitments. Previous thought experiment studies in virtual reality (VR) required participants to come to an on-site laboratory, which possibly restricted the study population, introduced an observer effect, and made internal reflection on the participants’ part more difficult. These shortcomings are particularly crucial today, as results from such studies are increasingly impacting the development of artificial intelligence systems, self-driving cars, and other technologies. This paper explores the viability of deploying thought experiments in commercially available in-home VR headsets. We conducted a study that presented the trolley problem, a life-and-death moral dilemma, through SideQuestVR, a third-party website and community that facilitates loading applications onto Oculus headsets. Thirty-three individuals were presented with one of two dilemmas: (1) a decision to save five lives at the cost of one life by pulling a switch and (2) a decision to save five lives at the cost of one life by pushing a person onto train tracks. The results were consistent with those of previous VR studies, suggesting that a “VR-at-a-distance” approach to thought experiments has a promising future while indicating lessons for future research

    Estimating Cognitive Workload in an Interactive Virtual Reality Environment Using EEG

    Get PDF
    With the recent surge of affordable, high-performance virtual reality (VR) headsets, there is unlimited potential for applications ranging from education, to training, to entertainment, to fitness and beyond. As these interfaces continue to evolve, passive user-state monitoring can play a key role in expanding the immersive VR experience, and tracking activity for user well-being. By recording physiological signals such as the electroencephalogram (EEG) during use of a VR device, the user\u27s interactions in the virtual environment could be adapted in real-time based on the user\u27s cognitive state. Current VR headsets provide a logical, convenient, and unobtrusive framework for mounting EEG sensors. The present study evaluates the feasibility of passively monitoring cognitive workload via EEG while performing a classical n-back task in an interactive VR environment. Data were collected from 15 participants and the spatio-spectral EEG features were analyzed with respect to task performance. The results indicate that scalp measurements of electrical activity can effectively discriminate three workload levels, even after suppression of a co-varying high-frequency activity

    Internet-of-Things Devices in Support of the Development of Echoic Skills Among Children with Autism Spectrum Disorder

    Get PDF
    A significant therapeutic challenge for people with disabilities is the development of verbal and echoic skills. Digital voice assistants (DVAs), such as Amazon’s Alexa, provide networked intelligence to billions of Internet-of-Things devices and have the potential to offer opportunities to people, such as those diagnosed with autism spectrum disorder (ASD), to advance these necessary skills. Voice interfaces can enable children with ASD to practice such skills at home; however, it remains unclear whether DVAs can be as proficient as therapists in recognizing utterances by a developing speaker. We developed an Alexa-based skill called ASPECT to measure how well the DVA identified verbalization by autistic children. The participants, nine children diagnosed with ASD, each participated in 30 sessions focused on increasing vocalizations and echoic responses. Children interacted with ASPECT prompted by instructions from an Echo device. ASPECT was trained to recognize utterances and evaluate them as a therapist would—simultaneously, a therapist scored the child’s responses. The study identified no significant difference between how ASPECT and the therapists scored participants; this conclusion held even when subsetting participants by a pre-treatment echoic skill assessment score. This indicates considerable potential for providing a continuum of therapeutic opportunities and reinforcement outside of clinical settings
    corecore