484 research outputs found

    How to Distinguish between Specular and Retroconfigurations for Andreev Reflection in Graphene Rings

    Full text link
    We numerically investigate Andreev reflection in a graphene ring with one normal conducting and one superconducting lead by solving the Bogoliubov--de Gennes equation within the Landauer-B\"uttiker formalism. By tuning chemical potential and bias voltage, it is possible to switch between regimes where electron and hole originate from the same band (retroconfiguration) or from different bands (specular configuration) of the graphene dispersion, respectively. We find that the dominant contributions to the Aharonov-Bohm conductance oscillations in the subgap transport are of period h/2eh/2e in retroconfiguration and of period h/eh/e in specular configuration, confirming the predictions obtained from a qualitative analysis of interfering scattering paths. Because of the robustness against disorder and moderate changes to the system, this provides a clear signature to distinguish both types of Andreev reflection processes in graphene.Comment: 5 pages, 5 figures. arXiv admin note: substantial text overlap with arXiv:1201.620

    Signatures of topology in ballistic bulk transport of HgTe quantum wells

    Full text link
    We calculate bulk transport properties of two-dimensional topological insulators based on HgTe quantum wells in the ballistic regime. Interestingly, we find that the conductance and the shot noise are distinctively different for the so-called normal regime (the topologically trivial case) and the so-called inverted regime (the topologically non-trivial case). Thus, it is possible to verify the topological order of a two-dimensional topological insulator not only via observable edge properties but also via observable bulk properties. This is important because we show that under certain conditions the bulk contribution can dominate the edge contribution which makes it essential to fully understand the former for the interpretation of future experiments in clean samples.Comment: 5 pages, 4 figure

    Tunable quantum spin Hall effect in double quantum wells

    Full text link
    The field of topological insulators (TIs) is rapidly growing. Concerning possible applications, the search for materials with an easily controllable TI phase is a key issue. The quantum spin Hall effect, characterized by a single pair of helical edge modes protected by time-reversal symmetry, has been demonstrated in HgTe-based quantum wells (QWs) with an inverted bandgap. We analyze the topological properties of a generically coupled HgTe-based double QW (DQW) and show how in such a system a TI phase can be driven by an inter-layer bias voltage, even when the individual layers are non-inverted. We argue, that this system allows for similar (layer-)pseudospin based physics as in bilayer graphene but with the crucial absence of a valley degeneracy.Comment: 9 pages, 8 figures, extended version (accepted Phys. Rev. B
    • …
    corecore