310 research outputs found
The scalars from the topcolor scenario and the spin correlations of the top pair production at the LHC
The topcolor scenario predicts the existences of some new scalars. In this
paper, we consider the contributions of these new particles to the observables,
which are related to the top quark pair () production at the LHC. It
is found that these new particles can generate significant corrections to the
production cross section and the spin correlations.Comment: 23 pages, 4 figures; discussions and references added; agrees with
published versio
Flux quantization and superfluid weight in doped antiferromagnets
Doped antiferromagnets, described by a t-t'-J model and a suitable 1/N
expansion, exhibit a metallic phase-modulated antiferromagnetic ground state
close to half-filling. Here we demonstrate that the energy of latter state is
an even periodic function of the external magnetic flux threading the square
lattice in an Aharonov-Bohm geometry. The period is equal to the flux quantum
entering the Peierls phase factor of the hopping
matrix elements. Thus flux quantization and a concomitant finite value of
superfluid weight D_s occur along with metallic antiferromagnetism. We argue
that in the context of the present effective model, whereby carriers are
treated as hard-core bosons, the charge q in the associated flux quantum might
be set equal to 2e. Finally, the superconducting transition temperature T_c is
related to D_s linearly, in accordance to the generic Kosterlitz-Thouless type
of transition in a two-dimensional system, signaling the coherence of the phase
fluctuations of the condensate. The calculated dependence of T_c on hole
concentration is qualitatively similar to that observed in the high-temperature
superconducting cuprates.Comment: 5 pages, 2 figures, to be published in J. Phys. Condens. Matte
Lattice determination of the critical point of QCD at finite T and \mu
Based on universal arguments it is believed that there is a critical point
(E) in QCD on the temperature (T) versus chemical potential (\mu) plane, which
is of extreme importance for heavy-ion experiments. Using finite size scaling
and a recently proposed lattice method to study QCD at finite \mu we determine
the location of E in QCD with n_f=2+1 dynamical staggered quarks with
semi-realistic masses on lattices. Our result is T_E=160 \pm 3.5 MeV
and \mu_E= 725 \pm 35 MeV. For the critical temperature at \mu=0 we obtained
T_c=172 \pm 3 MeV.Comment: misprints corrected, version to appear in JHE
The Higgs intense--coupling regime in constrained SUSY models and its astrophysical implications
We analyze the Higgs intense--coupling regime, in which all Higgs particles
of the Minimal Supersymmetric Standard Model are light with masses of the same
order and the value of \tb the ratio of vacuum expectation values of the two
Higgs fields is large, in the framework of Supergravity scenarios with
non--universal soft Supersymmetry breaking scalar masses in the Higgs sector.
In particular, we calculate the relic density abundance of the lightest
neutralino candidate for cold dark matter and the rates in direct and indirect
detection at present and future experiments. We first show that while in the
mSUGRA model this regime is disfavored by present data, there are regions in
the parameter space of models with non--universal Higgs masses where it can
occur. We then show that because of the large value of and the
relatively low values of the neutral Higgs boson masses, the cross section for
neutralino--nucleon scattering is strongly enhanced in this regime and would
allow for the observation of a signal in direct detection experiments such as
CDMS--Soudan. The expected sensitivity of gamma--ray detectors like GLAST might
be also sufficient to observe the annihilation of neutralinos in such a regime.Comment: 19 pages, 5 figure
VerdictDB: Universalizing Approximate Query Processing
Despite 25 years of research in academia, approximate query processing (AQP)
has had little industrial adoption. One of the major causes of this slow
adoption is the reluctance of traditional vendors to make radical changes to
their legacy codebases, and the preoccupation of newer vendors (e.g.,
SQL-on-Hadoop products) with implementing standard features. Additionally, the
few AQP engines that are available are each tied to a specific platform and
require users to completely abandon their existing databases---an unrealistic
expectation given the infancy of the AQP technology. Therefore, we argue that a
universal solution is needed: a database-agnostic approximation engine that
will widen the reach of this emerging technology across various platforms.
Our proposal, called VerdictDB, uses a middleware architecture that requires
no changes to the backend database, and thus, can work with all off-the-shelf
engines. Operating at the driver-level, VerdictDB intercepts analytical queries
issued to the database and rewrites them into another query that, if executed
by any standard relational engine, will yield sufficient information for
computing an approximate answer. VerdictDB uses the returned result set to
compute an approximate answer and error estimates, which are then passed on to
the user or application. However, lack of access to the query execution layer
introduces significant challenges in terms of generality, correctness, and
efficiency. This paper shows how VerdictDB overcomes these challenges and
delivers up to 171 speedup (18.45 on average) for a variety of
existing engines, such as Impala, Spark SQL, and Amazon Redshift, while
incurring less than 2.6% relative error. VerdictDB is open-sourced under Apache
License.Comment: Extended technical report of the paper that appeared in Proceedings
of the 2018 International Conference on Management of Data, pp. 1461-1476.
ACM, 201
Lattice supersymmetry, superfields and renormalization
We study Euclidean lattice formulations of non-gauge supersymmetric models
with up to four supercharges in various dimensions. We formulate the conditions
under which the interacting lattice theory can exactly preserve one or more
nilpotent anticommuting supersymmetries. We introduce a superfield formalism,
which allows the enumeration of all possible lattice supersymmetry invariants.
We use it to discuss the formulation of Q-exact lattice actions and their
renormalization in a general manner. In some examples, one exact supersymmetry
guarantees finiteness of the continuum limit of the lattice theory. As a
consequence, we show that the desired quantum continuum limit is obtained
without fine tuning for these models. Finally, we discuss the implications and
possible further applications of our results to the study of gauge and
non-gauge models.Comment: 44 pages, 1 figur
The Highest Energy Neutrinos
Measurements of the arrival directions of cosmic rays have not revealed their
sources. High energy neutrino telescopes attempt to resolve the problem by
detecting neutrinos whose directions are not scrambled by magnetic fields. The
key issue is whether the neutrino flux produced in cosmic ray accelerators is
detectable. It is believed that the answer is affirmative, both for the
galactic and extragalactic sources, provided the detector has kilometer-scale
dimensions. We revisit the case for kilometer-scale neutrino detectors in a
model-independent way by focussing on the energetics of the sources. The real
breakthrough though has not been on the theory but on the technology front: the
considerable technical hurdles to build such detectors have been overcome.
Where extragalactic cosmic rays are concerned an alternative method to probe
the accelerators consists in studying the arrival directions of neutrinos
produced in interactions with the microwave background near the source, i.e.
within a GZK radius. Their flux is calculable within large ambiguities but, in
any case, low. It is therefore likely that detectors that are larger yet by
several orders of magnitudes are required. These exploit novel techniques, such
as detecting the secondary radiation at radio wavelengths emitted by neutrino
induced showers.Comment: 16 pages, pdflatex, 7 jpg figures, ICRC style files included.
Highlight talk presented at the 30th International Cosmic Ray Conference,
Merida, Mexico, 200
A tentative Replica Study of the Glass Transition
We propose a method to study quantitatively the glass transition in a system
of interacting particles. In spite of the absence of any quenched disorder, we
introduce a replicated version of the hypernetted chain equations. The solution
of these equations, for hard or soft spheres, signals a transition to the glass
phase. However the predicted value of the energy and specific heat in the glass
phase are wrong, calling for an improvement of this method.Comment: 9 pages, four postcript figures attache
Mixed Wino Dark Matter: Consequences for Direct, Indirect and Collider Detection
In supersymmetric models with gravity-mediated SUSY breaking and gaugino mass
unification, the predicted relic abundance of neutralinos usually exceeds the
strict limits imposed by the WMAP collaboration. One way to obtain the correct
relic abundance is to abandon gaugino mass universality and allow a mixed
wino-bino lightest SUSY particle (LSP). The enhanced annihilation and
scattering cross sections of mixed wino dark matter (MWDM) compared to bino
dark matter lead to enhanced rates for direct dark matter detection, as well as
for indirect detection at neutrino telescopes and for detection of dark matter
annihilation products in the galactic halo. For collider experiments, MWDM
leads to a reduced but significant mass gap between the lightest neutralinos so
that chi_2^0 two-body decay modes are usually closed. This means that dilepton
mass edges-- the starting point for cascade decay reconstruction at the CERN
LHC-- should be accessible over almost all of parameter space. Measurement of
the m_{\tz_2}-m_{\tz_1} mass gap at LHC plus various sparticle masses and cross
sections as a function of beam polarization at the International Linear
Collider (ILC) would pinpoint MWDM as the dominant component of dark matter in
the universe.Comment: 29 pages including 19 eps figure
Inflation on an Open Racetrack
We present a variant of warped D-brane inflation by incorporating multiple
sets of holomorphically-embedded D7-branes involved in moduli stabilization
with extent into a warped throat. The resultant D3-brane motion depends on the
D7-brane configuration and the relative position of the D3-brane in these
backgrounds. The non-perturbative moduli stabilization superpotential takes the
racetrack form, but the additional D3-brane open string moduli dependence
provides more flexibilities in model building. For concreteness, we consider
D3-brane motion in the warped deformed conifold with the presence of multiple
D7-branes, and derive the scalar potential valid for the entire throat. By
explicit tuning of the microphysical parameters, we obtain inflationary
trajectories near an inflection point for various D7-brane configurations.
Moreover, the open racetrack potential admits approximate Minkowski vacua
before uplifting. We demonstrate with a concrete D-brane inflation model where
the Hubble scale during inflation can exceed the gravitino mass. Finally, the
multiple sets of D7-branes present in this open racetrack setup also provides a
mechanism to stabilize the D3-brane to metastable vacua in the intermediate
region of the warped throat.Comment: 29 pages, 15 figures, pre-print number and references adde
- …