5 research outputs found
Adaptive Filtering Enhances Information Transmission in Visual Cortex
Sensory neuroscience seeks to understand how the brain encodes natural
environments. However, neural coding has largely been studied using simplified
stimuli. In order to assess whether the brain's coding strategy depend on the
stimulus ensemble, we apply a new information-theoretic method that allows
unbiased calculation of neural filters (receptive fields) from responses to
natural scenes or other complex signals with strong multipoint correlations. In
the cat primary visual cortex we compare responses to natural inputs with those
to noise inputs matched for luminance and contrast. We find that neural filters
adaptively change with the input ensemble so as to increase the information
carried by the neural response about the filtered stimulus. Adaptation affects
the spatial frequency composition of the filter, enhancing sensitivity to
under-represented frequencies in agreement with optimal encoding arguments.
Adaptation occurs over 40 s to many minutes, longer than most previously
reported forms of adaptation.Comment: 20 pages, 11 figures, includes supplementary informatio
Cross Channel Correlations in Tetrode Recordings: Implications for Spike-Sorting.
We are exploring new methods of spike detection to improve spike-sorting in tetrode recordings. Based on our observation that the four channels of the tetrode carry highly correlated signals, we propose the use of a hyperellipsoidal thresholding surface in the 4-dimensional space of the signal values to detect spikes. This surface is determined by the cross-channel covariance matrix and provides a better approximation of the equiprobable surface of the noise amplitude distribution compared to the traditionally used hypercubical thresholding surface. This spike detection procedure greatly improves Rebrik, Wright, & Miller. Cross channel correlations in tetrode recordings. Page 2 of 8 the separation of signal clusters from the noise cluster around the origin. We have extended these approaches to automatic spike-sorting in both amplitude and full waveform spaces. Keywords: Tetrode; Spike-sorting; Multi-electrode recordings 1. Introduction Tetrodes allow recording from many nearby cells ..
Recommended from our members
SUPPLEMENTARY MATERIALS FOR Neurons in Cat V1 show significant clustering by degree of tuning (Published in Journal of Neurophysiology)
Contents: S1. Supplementary Methods: Description of spike-merging software S2. Supplementary Results: S2.1 Analysis with spontaneous activity included S2.2 Clustering of Spontaneous Activity and Measures of Response at the Null Orientation S2.3 Outliers for differences of orientation with multiunits S2.4 Relationship between Orientation Selectivity and Direction Selectivity S2.5 F1/DC ratios S2.6 Clustering of properties according to simple/complex cell classification S2.7 Subpopulations of the between-site distributions S2.8 Using the between-site, within-animal distributions as a control S3. Supplementary Discussion: Comparison to Previous Studies of Clustering of Preferred Stimuli
Abstract (from Journal of Neurophysiology paper): Neighboring neurons in cat primary visual cortex (V1) have similar preferred orientation, direction, and spatial frequency. How diverse is their degree of tuning for these properties? To address this, we used single-tetrode recordings to simultaneously isolate multiple cells at single recording sites and record their responses to flashed and drifting gratings of multiple orientations, spatial frequencies and, for drifting gratings, directions. Orientation tuning width, spatial frequency tuning width and direction selectivity index (DSI) all showed significant clustering: pairs of neuron recorded at a single site were significantly more similar in each of these properties than pairs of neurons from different recording sites. The strength of the clustering was generally modest. The percentage decrease in the median difference between pairs from the same site, relative to pairs from different sites, was: for different measures of orientation tuning width, 29-35% (drifting gratings) or 15-25% (flashed gratings); for DSI, 24%; and for spatial frequency tuning width measured in octaves, 8% (drifting gratings). The clusterings of all of these measures were much weaker than for preferred orientation (68% decrease), but comparable to that seen for preferred spatial frequency in response to drifting gratings (26%). For the above properties, little difference in clustering was seen between simple and complex cells. In studies of spatial frequency tuning to flashed gratings, strong clustering was seen among simple-cell pairs for tuning width (70% decrease) and preferred frequency (71% decrease), whereas no clustering was seen for simple/complex or complex/complex cell pairs