496 research outputs found

    Systematic reduction of sign errors in many-body calculations of atoms and molecules

    Full text link
    The self-healing diffusion Monte Carlo algorithm (SHDMC) [Phys. Rev. B {\bf 79}, 195117 (2009), {\it ibid.} {\bf 80}, 125110 (2009)] is shown to be an accurate and robust method for calculating the ground state of atoms and molecules. By direct comparison with accurate configuration interaction results for the oxygen atom we show that SHDMC converges systematically towards the ground-state wave function. We present results for the challenging N2_2 molecule, where the binding energies obtained via both energy minimization and SHDMC are near chemical accuracy (1 kcal/mol). Moreover, we demonstrate that SHDMC is robust enough to find the nodal surface for systems at least as large as C20_{20} starting from random coefficients. SHDMC is a linear-scaling method, in the degrees of freedom of the nodes, that systematically reduces the fermion sign problem.Comment: Final version accepted in Physical Review Letters. The review history (referees' comments and our replies) is included in the source

    Ab initio quantum Monte Carlo calculations of spin superexchange in cuprates: the benchmarking case of Ca2_2CuO3_3

    Full text link
    In view of the continuous theoretical efforts aimed at an accurate microscopic description of the strongly correlated transition metal oxides and related materials, we show that with continuum quantum Monte Carlo (QMC) calculations it is possible to obtain the value of the spin superexchange coupling constant of a copper oxide in a quantitatively excellent agreement with experiment. The variational nature of the QMC total energy allows us to identify the best trial wave function out of the available pool of wave functions, which makes the approach essentially free from adjustable parameters and thus truly ab initio. The present results on magnetic interactions suggest that QMC is capable of accurately describing ground state properties of strongly correlated materials.Comment: Published in Physical Review
    • …
    corecore