2 research outputs found

    A Robust Learning Methodology for Uncertainty-aware Scientific Machine Learning models

    Full text link
    Robust learning is an important issue in Scientific Machine Learning (SciML). There are several works in the literature addressing this topic. However, there is an increasing demand for methods that can simultaneously consider all the different uncertainty components involved in SciML model identification. Hence, this work proposes a comprehensive methodology for uncertainty evaluation of the SciML that also considers several possible sources of uncertainties involved in the identification process. The uncertainties considered in the proposed method are the absence of theory and causal models, the sensitiveness to data corruption or imperfection, and the computational effort. Therefore, it was possible to provide an overall strategy for the uncertainty-aware models in the SciML field. The methodology is validated through a case study, developing a Soft Sensor for a polymerization reactor. The results demonstrated that the identified Soft Sensor are robust for uncertainties, corroborating with the consistency of the proposed approach.Comment: 23 page

    PUFFIN: A Path-Unifying Feed-Forward Interfaced Network for Vapor Pressure Prediction

    Full text link
    Accurately predicting vapor pressure is vital for various industrial and environmental applications. However, obtaining accurate measurements for all compounds of interest is not possible due to the resource and labor intensity of experiments. The demand for resources and labor further multiplies when a temperature-dependent relationship for predicting vapor pressure is desired. In this paper, we propose PUFFIN (Path-Unifying Feed-Forward Interfaced Network), a machine learning framework that combines transfer learning with a new inductive bias node inspired by domain knowledge (the Antoine equation) to improve vapor pressure prediction. By leveraging inductive bias and transfer learning using graph embeddings, PUFFIN outperforms alternative strategies that do not use inductive bias or that use generic descriptors of compounds. The framework's incorporation of domain-specific knowledge to overcome the limitation of poor data availability shows its potential for broader applications in chemical compound analysis, including the prediction of other physicochemical properties. Importantly, our proposed machine learning framework is partially interpretable, because the inductive Antoine node yields network-derived Antoine equation coefficients. It would then be possible to directly incorporate the obtained analytical expression in process design software for better prediction and control of processes occurring in industry and the environment
    corecore