5 research outputs found

    A g-factor metric for k-t SENSE and k-t PCA based parallel imaging

    Full text link
    PURPOSE: To propose and validate a g-factor formalism for k-t SENSE, k-t PCA and related k-t methods for assessing SNR and temporal fidelity. METHODS: An analytical gxf -factor formulation in the spatiotemporal frequency domain is derived, enabling assessment of noise and depiction fidelity in both the spatial and frequency domain. Using pseudoreplica analysis of cardiac cine data the gxf -factor description is validated and example data are used to analyze the performance of k-t methods for various parameter settings. RESULTS: Analytical gxf -factor maps were found to agree well with pseudoreplica analysis for 3x, 5x, and 7x k-t SENSE and k-t PCA. While k-t SENSE resulted in lower average gxf values (gx (avg) ) in static regions when compared with k-t PCA, k-t PCA yielded lower gx (avg) values in dynamic regions. Temporal transfer was better preserved with k-t PCA for increasing undersampling factors. CONCLUSION: The proposed gxf -factor and temporal transfer formalism allows assessing noise performance and temporal depiction fidelity of k-t methods including k-t SENSE and k-t PCA. The framework enables quantitative comparison of different k-t methods relative to frame-by-frame parallel imaging reconstruction. Magn Reson Med 75:562-571, 2016. © 2015 Wiley Periodicals, Inc

    High resolution CBV assessment with PEAK-EPI: k-t-undersampling and reconstruction in echo planar imaging.

    No full text
    PURPOSE Achieving higher spatial resolution and improved brain coverage while mitigating in-plane susceptibility artifacts in the assessment of perfusion parameters, such as cerebral blood volume, in echo planar imaging (EPI)-based dynamic susceptibility contrast weighted cerebral perfusion measurements. METHODS PEAK-EPI, an EPI sequence with interleaved readout trajectories and three different strategies for autocalibration-signal acquisition (inplace, dynamic extra and extra) is presented. Performance of each approach is analyzed in vivo based on flip angle variation induced dynamics, assessing temporal fidelity, temporal SNR and g-factors. All approaches are compared with conventional GRAPPA reconstructions. PEAK-EPI with inplace autocalibration-signal at R = 5 is then compared with the standard clinical EPI protocol in six patients, using two half-dose dynamic susceptibility contrast weighted cerebral perfusion measurements per subject. RESULTS PEAK-EPI acquisition facilitates a substantial increase of spatial resolution at a higher number of slices per TR and provides improved SNR compared to conventional GRAPPA. High dependency of the resulting reconstruction quality on the type of autocalibration-signal acquisition is observed. PEAK-EPI with inplace autocalibration-signal achieves high temporal fidelity and initial feasibility is shown. CONCLUSION The obtained high resolution cerebral blood volume maps reveal more detailed information than in corresponding standard EPI measurements and facilitate detailed delineation of tumorous tissue. Magn Reson Med 77:2153-2166, 2017. © 2016 International Society for Magnetic Resonance in Medicine

    A g-factor metric for k-t-GRAPPA- and PEAK-GRAPPA-based parallel imaging.

    No full text
    PURPOSE The aim of this work is to derive a theoretical framework for quantitative noise and temporal fidelity analysis of time-resolved k-space-based parallel imaging methods. THEORY An analytical formalism of noise distribution is derived extending the existing g-factor formulation for nontime-resolved generalized autocalibrating partially parallel acquisition (GRAPPA) to time-resolved k-space-based methods. The noise analysis considers temporal noise correlations and is further accompanied by a temporal filtering analysis. METHODS All methods are derived and presented for k-t-GRAPPA and PEAK-GRAPPA. A sliding window reconstruction and nontime-resolved GRAPPA are taken as a reference. Statistical validation is based on series of pseudoreplica images. The analysis is demonstrated on a short-axis cardiac CINE dataset. RESULTS The superior signal-to-noise performance of time-resolved over nontime-resolved parallel imaging methods at the expense of temporal frequency filtering is analytically confirmed. Further, different temporal frequency filter characteristics of k-t-GRAPPA, PEAK-GRAPPA, and sliding window are revealed. CONCLUSION The proposed analysis of noise behavior and temporal fidelity establishes a theoretical basis for a quantitative evaluation of time-resolved reconstruction methods. Therefore, the presented theory allows for comparison between time-resolved parallel imaging methods and also nontime-resolved methods. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc
    corecore